

US009272996B2

(12) United States Patent

Siegel et al.

(54) 2-ACYLAMINOPROPOANOL-TYPE GLUCOSYLCERAMIDE SYNTHASE INHIBITORS

(75) Inventors: Craig Siegel, Woburn, MA (US); Cecilia M. Bastos, South Grafton, MA (US); David J. Harris, Lexington, MA (US); Angeles Dios, Ashland, MA (US); Edward Lee, Sudbury, MA (US); Richard Silva, Needham, MA (US); Lisa M. Cuff, Leominster, MA (US); Mikaela Levine, Swampscott, MA (US); Cassandra A. Celatka, Hull, MA (US); Thomas H. Jozefiak, Belmont, MA (US); Frederic Vinick, Mechanicville, NY (US); Yibin Xiang, Acton, MA (US); John Kane, Maynard, MA (US);

(73) Assignee: Genzyme Corporation, Cambridge, MA (US)

Junkai Liao, Andover, MA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 185 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/595,251

(22) Filed: Aug. 27, 2012

(65) **Prior Publication Data**

US 2012/0322786 A1 Dec. 20, 2012

Related U.S. Application Data

- (63) Continuation of application No. 13/122,135, filed as application No. PCT/US2009/005435 on Oct. 2, 2009, now Pat. No. 8,309,593.
- (60) Provisional application No. 61/102,541, filed on Oct. 3, 2008.

(51)	Int. Cl.	
	A61K 31/397	(2006.01)
	A61K 31/5377	(2006.01)
	A61K 31/44	(2006.01)
	A61K 31/325	(2006.01)
	A61K 31/42	(2006.01)
	A61K 31/40	(2006.01)
	C07D 207/12	(2006.01)
	C07D 271/12	(2006.01)
	C07D 317/60	(2006.01)
		(Continued)

(52) U.S. Cl.

 (45) Date of Patent: *I

US 9,272,996 B2 *Mar. 1, 2016

(58) Field of Classification Search

(10) **Patent No.:**

CPC . A61K 31/397; A61K 31/5377; A61K 31/44; A61K 21/325; A61K 31/42; A61K 31/40; C07D 207/12; C07D 271/12; C07D 317/60; C07D 319/18; C07D 333/16; C07D 407/12; C07D 409/04; C07D 413/04; C07D 417/02 See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,065,562 A 12/1977 Ohata et al. 4,182,767 A 12/1980 Murai et al. (Continued)

FOREIGN PATENT DOCUMENTS

EP 126974 A1 12/1984 EP 0 144 290 A 6/1985 (Continued)

OTHER PUBLICATIONS

Qi Qian et al. (Kidney International (2001) 59, 2005-2022; doi:10. 1046/j.1523 1755.2001.00716).*

(Continued)

Primary Examiner — Samantha Shterengarts (74) Attorney, Agent, or Firm — Hamilton, Brook, Smith & Reynolds, P.C.

(57) ABSTRACT

A compound for use in treating polycystic kidney disease is represented by Structural Formula (I):

$$\begin{array}{c}
OY \\
R^{1} \\
N(R^{2}R^{3}) \\
X - R^{4}
\end{array}$$

or a pharmaceutically acceptable salt thereof. A pharmaceutical composition comprises a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. A method of treating polycystic kidney disease in a subject in need thereof comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof. Methods of treating in polycystic kidney disease in a subject in need thereof respectively comprise administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

16 Claims, No Drawings

(51) Int. Cl.		2007	/0112028 A1	5/2007	Orchard		
C07D 319/18	(2006.01)		/0203223 A1		Siegel et al.		
C07D 333/16	(2006.01)		/0146533 A1 /0312392 A1		Shayman et al. Shayman et al.		
C07D 407/12	(2006.01)		/0256216 A1		Siegel et al.		
C07D 409/04	(2006.01)		/0298317 A1		Natoli et al.		
C07D 413/04	(2006.01)		/0166134 A1		Ibraghimov-Beskrovnaya et al.		
C07D 417/12	(2006.01)		/0184021 A1		Siegel et al.		
C07C 271/12	(2006.01)		/0022126 A1 /0322787 A1*		Cheng et al 514/210.19		
C07D 319/20	(2006.01)		/0225573 A1		Ibraghimov-Beskrovnaya et al.		
C07D 407/06	(2006.01)		/0336174 A1	11/2014	Ibraghimov-Beskrovnaya et al.		
	` '		/0051261 A1		Zhao et al.		
(56) Refere	nces Cited		/0190373 A1		Cheng et al.		
II.O DATENT	F DOCLIN (ENTER	2015/0225393 A1 8/2015 Siegel et al.					
U.S. PAIEN	T DOCUMENTS	FOREIGN PATENT DOCUMENTS					
4,533,668 A 8/1985	Matsumura et al.						
	Junge et al.	EP		865 A1	4/1997		
	Radin et al.	EP		719 A1	1/2004		
	Shayman et al.	EP EP		056 A1 894 A1	5/2005 9/2005		
	Platt et al. Platt et al.	GB	2054		2/1981		
	Wei et al.	JP	35-5		5/1960		
	Inokuchi et al.	JP	9-169		6/1997		
	Inokuchi et al.	JP		856 A1	8/1997		
	Inokuchi et al.	JP JP	10-324		12/1998		
	Jinbo et al.	JP	2003-238	636 A 410 A	12/1998 8/2003		
	Shayman et al. Shayman et al.	WO	WO 97/10		3/1997		
	Shayman et al.	WO	WO 98/52	553	11/1998		
	Chatterjee	WO	WO 01/04		1/2001		
	Shayman et al.	WO WO	WO 01/54		8/2001		
	Shayman et al.	WO	WO 01/80 WO 02/50		11/2001 6/2002		
	Shayman et al. Chatterjee	WO	WO 02/055		7/2002		
	Shayman et al.	WO	WO 02/062		8/2002		
	Jimbo et al.	WO	WO 03/008		1/2003		
	Masuda et al.	WO	WO 03/057		7/2003		
	Chatterjee	WO WO	WO 03/068 WO 2004/007		8/2003 1/2004		
	Shayman et al. Jacob et al.	wo	WO 2004/056		7/2004		
	Butters et al.	WO	WO 2004/078		9/2004		
6,835,831 B2 12/2004	Hirth	WO	WO 2005/039		5/2005		
	Hirth et al.	WO WO	WO 2005/040		5/2005		
	Shayman et al.	WO	WO 2005/063 WO 2005/068		7/2005 7/2005		
	Shayman et al. Shayman	wo	WO 2005/087		9/2005		
	Siegel et al.	WO	WO 2005/108		11/2005		
	Shayman et al.	WO	WO 2005/123		12/2005		
	Hirth et al.	WO	WO 2006/023		3/2006 5/2006		
	Shayman	WO WO	WO 2006/053 WO 2006/053		5/2006 5/2006		
7,615,573 B2 11/2009 7,763,738 B2 7/2010	Siegel et al. Hirth et al.	wo	WO 2007/022		2/2007		
	Cheng et al.	WO	WO 2007/134		11/2007		
	Siegel et al.	WO	WO 2007/134		11/2007		
	Siegel et al.	WO WO	WO 2008/011 WO 2008/011		1/2008 1/2008		
	Ibraghimov-Beskrovyana et al.	WO	WO 2008/011 WO 2008/012		1/2008		
	Zhao et al. Ibraghimov-Beskrovnaya et al.	WO	WO 2008/024		2/2008		
	Ibraghimov-Beskrovnaya et al.	WO	WO 2008/150	486 A2	12/2008		
	Siegel et al.	WO	WO 2009/045		4/2009		
	Masuda et al.	WO	WO 2009/117	150 A2	9/2009		
	Shayman et al.		OTF	HER PU	BLICATIONS		
	Shayman et al. Hirth et al.						
	Shayman et al.	Notice	of Allowance an	d Fee(s) l	Due for U.S. Appl. No. 12/227,076;		
	Shayman	titled: '	"Methods of Tre	ating Fatt	y Liver Disease" Date Mailed: Oct.		
	Hirth et al.	9, 2012	2.				
2005/0049235 A1 3/2005					l Chemistry, Moscow", Vysshaya		
	Siegel et al. Shayman et al.		Publishers, pp.				
	Shayman et al.				Due for U.S. Appl. No. 13/055,036;		
2006/0058349 A1 3/2006	Ali et al.				ase Inhibition for the Treatment of		
	Butters et al 514/327		sing Glomerulor l: Oct. 31, 2012.	oatny and	Other Glomerular Disease" Date		
	Shayman			atment r	prospects for autosomal-dominant		
	Lobb Aerts				ey International, vol. 59, pp. 2005-		
	Shayman	2002 (•	,	, , , , , , , , , , , , , , , , , , ,		
	-	`	•				

(56) References Cited

OTHER PUBLICATIONS

Non-Final Office Action for U.S. Appl. No. 12/681,291 dated Dec. 10, 2012, "Method of Treating Polycystic Kidney Diseases with Ceramide Derivatives".

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/601,871; "2- Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" Date Mailed: Aug. 9, 2012.

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/122,135; "2- Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" Date Mailed: Aug. 1, 2012.

Non-Final Office Action for U.S. Appl. No. 13/122,135 mailed on Apr. 27, 2012.

Natoli, T.A., et al., "Inhibition of glucosylceramide accumulation results in effective blockade of polysystic kidney disease in mouse models" and supplemental information, *Nature Medicine*, 16(7): 788-792 (Jul. 2010).

Abdel-Magid, A., et al., "Metal-Assisted Aldol Condensation of Chiral α-Halogenated Imide Enolates: A Stereocontrolled Chiral Epoxide Syntheses, "J. Am. Chem Soc., 108: 4595-4602 (1986).

Abe, A., et al., "Improved Inhibitors of Glucosylceramide Synthase," *J. Biochem.*, 111:191-196 (1992).

Abe, A., et al., "Induction of Glucosylceramide Synthase by Synthase Inhibitors and Ceramide," *Biochim. Biophys. Acta*, 1299: 333-341 (1996)

Abe, A., et al., "Metabolic Effects of Short-Chain Ceramide and Glucosylceramide on Sphingolipids and Protein Kinase C," Eur. J. Biochem, 210: 765-773 (1992).

Abe, A., et al., "Reduction of Globotriasylceramide in Fabry Disease mice by substrate deprivation", *J. Clin Invest.* 105(11): 1563-1571, (2000)

Abe, A., et al., "Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth," *J. Lipid Research*, 36:611-621 (1995).

Adams, L.A., et al., "Nonalcoholic Fatty Liver Disease," *CMAJ*, 172(7):899-905 (2005).

Alberti, C., et al., "Chloramphenicol. XII and XIII. Chloramphenicol analogs. p-Nitrophenyldiaminopropanols", *Chemical Abstracts Service*, XP002495477 retrieved from CAPLUS Database accession No. 1957:17088 (abstract).

Alker, D., et al., "Application of Enantiopure Templated Azomethine Ylids to β -Hydroxy- α -amino Acid Syntheses," *Tetrahedron*, 54: 6089-6098 (1998).

Alon, R., et al., "Glycolipid Ligands for Selectins Support Leukocyte Tethering and Rolling Under Physiologic Flow Conditions," *J. Immunol.*, 154: 5356-5366 (1995).

Ames, Bruce N., "Assay of Inorganic Phosphate, Total Phosphate and Phosphatases," *Methods Enzymol.*, 8: 115-118 (1996).

Asano, N., "Glycosidase Inhibitors: Update and Perspectives on Practical Use," *Glycobiology*, 13(10):93R-104R (2003).

Bielawska, A., et al., "Ceramide-Mediated Biology: Determination of Structural and Stereospecific Requirements Through the Use of N-Acyl-Phenylaminoalcohol Analogs," *J. Biol. Chem.*, 267: 18493-18497 (1992).

Bielawska, et al., "Modulation of Cell Growth and Differentiation by Ceramide," FEBS Letters, 307(2): 211-214 (1992).

Blobe, G.C., et al., "Regulation of Protein Kinase C and its Role in Cancer Biology," *Cancer Metastasis Rev.*, 13: 411-431 (1994).

Brenkert, A., et al., "Synthesis of Galactosyl Ceramide and Glucosyl Ceramide by Rat Brain: Assay Procedures and Changes with Age," *Brain Res.*, 36: 183-193 (1972).

CAPLUS Listing of Accession No: 1985:221199, Keith McCullagh, et al., "Carboxyalkyl peptide derivatives.".

Carson, K.G., et al., "Studies on Morpholinosphingolipids: Potent Inhibitors of Glucosylceramide Synthase," *Tetrahedron Letters*, 35(17): 2659-2662 (1994).

Chatterjee, S., et al., "Oxidized Low Density Lipoprotein Stimulates Aortic Smooth Muscle Cell Proliferation", *Glycobiology*, 6(3): 303-311 (1996).

Chatterjee, S., et al., "Role of lactosylceramide and MAP kinase in the proliferation of proximal tubular cells in human polycystic kidney disease", *Journal of Lipid Research*, 37(6): 1334-1344 (1996).

Clark, J.M., et al., "Nonalcoholic Fatty Liver Disease, An Underrecognized Cause of Cryptogenic Cirrhosis," *JAMA*, 289(22):3000-3004 (2003).

Comuzzie, A.G., et al., "The Baboon as a Nonhuman Primate Model for the Study of the Genetics of Obesity", *Obesity Research*, 11(1):75-80 (2003).

Dellaria, Jr., J.F., et al., "Enantioselective Synthesis of α -Amino Acid Derivatives via the Stereoselective Alkylation of a Homochiral Glycine Enolate Synthon," *J. Org. Chem.*, 54: 3916-3926 (1989).

Dickie, P., et al., "HIV-Associated Nephropathy in Transgenic Mice Expressing HIV-1 Genes," *Virology*, 185:109-119, 1991.

Dittert, L.W., et al., "Acetaminophen Prodrugs I-Synthesis, Physicochemical Properties and Analgesic Activity", *J. Pharm. Sci.* 57(5), pp. 774-780 (1968).

Elbein, A.D., "Glycosidase Inhibitors: Inhibitors of N-linked Oligosaccharide Processing," *The FASEB Journal*, 5:3055-3063 (1991)

European Search Report, European Application No. 09003291.3 dated Apr. 29, 2009.

Evans, D.A., et al., "Stereoselective Aldol Condensations Via Boron Enolates," *J. Am. Chem. Soc.*, 103: 3099-3111 (1981).

Fan, J-G., et al., "Preventie Effects of Metformin on Rats with Non-alcoholic Steatohepatitis," *Hepatology*, 34(4)(1), p. 501A (2003).

Felding-Habermann, B., et al., "A Ceramide Analog Inhibits T Cell Proliferative Response Through Inhibition of Glycosphingolipid Synthesis and Enhancement of N,N-Dimethylsphingosins Synthesis," *Biochemistry*, 29: 6314-6322 (1990).

Folch, J., et al., "A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues", *J. Biol. Chem.*, 226:497-509, 1956.

Freircich, E., et al., "Quantitative Comparison of Toxicity of Anticancer Agents in Mouse, Rat, Hampster, Dog, Monkey, and Man", Cancer Chemother. Reports 50(4):219 (1996).

Gatt, S., et al., "Assay of Enzymes of Lipid Metabolism with Colored and Fluorescent Derivatives of Natural Lipids," *Meth. Enzymol.*, 72: 351-375 (1981).

Gill-Randall, R.J., et al., "Is human Type 2 diabetes maternally inherited? Insights from an animal model", Diabet. Med. 21 (7):759 (2004).

Hakomori, S. "New Directions in Cancer Therapy Based on Aberrant Expression of Glycosphingolipids: Anti-adhesion and Ortho-Signaling Therapy," *Cancer Cells* 3(12): 461-470 (1991).

Hammett, L.P. *Physical Organic Chemistry*, (NY: McGraw), (1940). Harwood, L.M., et al., "Asymmetric Cycloadditions of Aldehydes to Stabilized Azomethine Ylids: Enantiocontrolled Construction of β-Hydroxy-α-amino acid Derivitives," *Tetrahedron: Asymmetry*, 3(9): 1127-1130 (1992).

Harwood, L.M., et al., "Double diastereocontrol in the synthesis of enantiomerically pure polyoxamic acid," *Chem. Commun.*, 2641-2642 (1998).

Högberg, T. and Ulf Norinder, "Theoretical and Experimental Methods in Drug Design Applied on Antipsychotic Dopamine Antagonists" *Textbook of Drug Design and Development*, pp. 55-91 (1991). Hospattankar, A.V., et al., "Changes in Liver Lipids After Administration of 2-Decanoylamino-3-morpholinopropiophenone and Chlorpromazine." *Lipids*. 17(8): 538-543 (1982).

Chlorpromazine," Lipids, 17(8): 538-543 (1982). Inokuchi, et al., "Amino Alcohol Esters as Ceramide Analogs and Pharmaceuticals Containing Them for Treatment of Nerve Diseases," Abstract of CAPLUS Accession No. 1998: 786189, JP 10324671 (1998).

Inokuchi, et al., (1996): SNT International HCAPLUS database, Columbus (OH), accession No. 1996: 214749.

Inokuchi, J. et al., "Antitumor Activity Via Inhibition of Glycosphingolipid Biosynthesis," *Cancer Lett.*, 38:23-30(1987).

Inokuchi, J., et al., "Preparation of the Active Isomer of 1-pheny1-2-decanoylamino-3-morpholino-1-propanol, inhibitor of Murine Clucocerebroside Synthetase," *Journal of Lipid Research*, 28:565-571 (1987).

(56) References Cited

OTHER PUBLICATIONS

Inokuchi, J., et al., "Inhibition of Experimental Metastasis of Murine Lewis Lung Carcinoma by an Inhibitor of Glucosylceramide Synthase and Its Possible Mechanism of Action", *Cancer Research*, 50:6731-6737 (1990).

Inokuchi, el al., "Aminoalcohol derivatives for treatment of abnormal proliferative diseases", *Chemical Abstracts Service*, XP002495476 retrieved from CAPLUS Database accession No. 1998:816280 (abstract).

International Preliminary Examination Report issued in International Application PCT/US2000/18935, titled: "Amino Ceramide-Like Compounds and Therapeutic Methods of Use" (WO 01/04108) dated Jul. 20, 2001.

International Preliminary Examination Report for International Application No. PCT/US2002/022659, titled: "Synthesis of UDP-Glucose: N-Acylsphingosine Glucosyltransferase Inhibitors" dated Jul. 24, 2003.

International Preliminary Report on Patentability for International Application No. PCT/US2008/011450, titled: "Method of Treating Polycystic Kidney Diseases With Ceramide Derivatives" dated Apr. 7, 2010.

International Preliminary Report on Patentability for International Application No. PCT/US2009/001773, titled: Method of Treating Lupus with Ceramide Derivatives: dated Sep. 21, 2010.

International Preliminary Report on Patentability issued in International Application PCT/US2007/068521, titled: "Methods of Treating Fatty Liver Disease" dated Nov. 11, 2008.

International Preliminary Report on Patentability issued in International Application PCT/US2005/040596, titled: "Methods of Treating Diabetes Mellitus" dated May 15, 2007.

International Preliminary Examination Report issued in International Application PCT/US2002/00808, titled: "Amino Ceramide-Like Compounds and Therapeutic Methods of Use", dated Jan. 10, 2003. International Search Report for PCT/US2000/018935, titled: "Amino Ceramide-Like Compounds and Therapeutic Methods of Use" dated Nov. 28, 2000.

International Search Report for PCT/US2002/00808, titled: "Amino Ceramide-Like Compounds and Therapeutic Methods of Use", dated Oct. 1, 2002

International Search Report for PCT/US2002/022659, titled: "Synthesis of UDP-Glucose: N-Acylsphingosine Glucosyltransferase Inhibitors" dated Nov. 5, 2002.

Jaffrézou, Jr., et al., "Inhibition of Lysosomal Acid Sphingomyelinase by Agents which Reverse Multidrug Resistance," *Biochim. Biophys. Acta*, 1266: 1-8 (1995).

Jankowski, K., "Microdetermination of phosphorus in organic materials from polymer industry by microwave-induced plasma atomic emission spectrometry after microwave digestion", *Microchem. J.*, 70:41-49, 2001.

Jimbo, M., et al., "Development of a New Inhibitor of Glucosylceramide Synthase", *J. Biochem*, 127: 485-491 (2000).

Kabayama, K., et al., "TNFα-induced Insulin Resistance in Adipocytes as a Membrane Microdomain Disorder: Involvement of Ganglioside GM3," *Glycobiology*, 15(1): 21-29 (2005).

Kalén, A., et al., "Elevated Ceramide Levels in GH₄C₁ Cells Treated with Retinoic Acid," *Biochim. Biophys. Acta*, 1125: 90-96 (1992). Kopaczyk, K., C., et al., "In Vivo Conversions of Cerebroside and

Ceramide in Rat Brain," *J. Lipid Res.*, 6: 140-145 (1965). Kurosawa, M., et al., " C^{14} -Labeling of Novel Atypical β -Adrenocep-

Kurosawa, M., et al., "C¹⁴-Labeling of Novel Atypical β-Adrenoceptor Agonist, SM-11044," *Journal of Labelled Compounds and Radiopharmaceuticals*, 38(3): 285-297 (1996).

Lee, L., et al. "Improved Inhibitors of Glucosylceramide Synthase", *J. Bio Chem.*, 274(21): 14662-14669 (1999).

Masson, E., et al., "a-Series Gangliosides Mediate the Effects of Advanced Glycation End Products on Pericyte and Mesangial Cell Proliferation—A Common Mediator for Retinal and Renal Microangiopathy?," *Diabetes*, 54:220-227 (2005).

Mitchell, S., et al., "Glycosyltransferase Inhibitors: Synthesis of D-threo-PDMP, L-threo-PDMP, and Other Brain Glucosylceramide Synthase Inhibitors from D- or L-Serine," *J. Org. Chem.*, 63: 8837-8842 (1998).

Miura, T., et al., "Synthesis and Evaluation of Morpholino and Pyrrolidinosphingolipids as Inhibitors of Glucosylceramide Synthase", *Bioorganic and Medicinal Chemistry*, (6) 1481-1489 (1998).

Nakamura, K., et al., "Coomassie Brilliant Blue Staining of Lipids on Thin-Layer Plates," *Anal. Biochem.*, 142: 406-410 (1984).

Nicolaou, K., et al., "A Practical and Enantioselective Synthesis of Glycosphingolipids and Related Compounds. Total Synthesis of Globotriasylceramide (Gb3)," *J. Am. Chem., Soc.*, 110: 7910-7912 (1988).

 $\label{eq:Nishida} Nishida, A., et al., ``Practical Synthesis of threo-(1S, 2S)- and erythro-(1R, 2S)-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) from L-Serine, ``Synlett, 389390(1998).$

Nojiri, H., et al., "Ganglioside GM3: An acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937", *Proc. Natl. Acad. Sci.*, 83:782-786 (1986).

International Preliminary Report on Patentability for International Application No. PCT/US2008/006906, titled: "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" Dated Dec. 1, 2009.

International Preliminary Report on Patentability for International Application No. PCT/US2009/051864, titled "Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Diseases" dated Feb. 1, 2011.

Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2008/006906, titled: "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" dated Dec. 4, 2008.

Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2008/011450, titled "Method of Treating Polycystic Kidney Diseases with Ceramide Derivatives" dated Jan. 21, 2009.

Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2009/001773, titled "Method of Treating Lupus with Ceramide Derivatives", dated Nov. 11, 2009. Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2009/051864, titled "Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Diseases" dated Nov. 3,

Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2009/005435, titled: "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors", dated Feb. 12, 2010.

Notification of Transmittal of the International Search Report and Written Opinion of the International Searching Authority from International Application No. PCT/US2007/068521, titled: "Methods of Treating Fatty Liver Disease" dated Nov. 21, 2007.

Ogawa, S., et al., "Synthesis and Biological Evaluation of Four Stereoisomers of PDMP-Analogue, N-(2-Decylamino-3-Hydroxy-3-Phenylprop-1-YL)-β-Valienamine, and Related Compounds," *Bioorganic & Medicinal Chemistry Letters*, 7(14):1915-1920 (1997).

Overkleeft, H.S., et al., "Generation of Specific Deoxynojirimycintype Inhibitors of the Non-lysosomal Glucosylceramidase," *The Journal of Biological Chemistry*, 273(41):26522-26527 (1998).

Preiss, J., et al., "Quantitative Measurement of sn-1,2-DiacIglycerols Present in Platelets, Hepatocytes, and ras-and sis-Transformed Normal Rat Kidney Cells," *J. Biol. Chem.*, 261(19): 8597-8600 (1986). Radin, N.S.. "Killing Cancer Cells by Poly-drug Elevation of Ceramide Levels, A Hypothesis Whose Time has Come:," *Eur. J. Biochem.* 268(2): 193-204 (2001).

(Aug. 2004).

(56) References Cited

OTHER PUBLICATIONS

Radin, N.S., et al., "Metabolic Effects of Inhibiting Glucosylceramide Synthesis with PDMP and Other Substances." *Advances in Lipid Research: Sphingolipids, Part B.*, R.M. Bell et al., Eds. (San Diego: Academic Press), 26: 183-213 (1993).

Radin, N.S., et al., "Ultrasonic Baths as Substitutes for Shaking Incubator Baths," *Enzyme*, 45: 867-70(1991).

Radin, N.S., et al., "Use of an Inhibitor of Glucosylceramide Synthesis, D-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol," In *NeuroProtocols: A Companion to Methods in Neurosciences*, S.K. Fisher, et al., Eds., (San Diego: Academic Press) 3: 145-155 (1993). Rosenwald, A.G., et al., "Effects of a Sphingolipid Synthesis Inhibitor on Membrane Transport Through the Secretory Pathway," *Biochemistry*, 31: 3581-3590 (1992).

Rosenwald, A.G., et al., "Effects of the Glucosphingolipid Synthesis Inhibitor, PDMP, on Lysosomes in Cultured Cells," *J. Lipid Res.*, 35: 1232-1240 (1994).

Rubino, MD., F., et al., "Letter to the Editor," *Annals of Surgery*, 240(2):389-390 (2004).

Sandhoff, K., et al., "Biosynthesis and Degradation of Mammalian Glycosphingolipids," *Phil. Trans. R. Soc. Lond*, B 358:847-861 (2003).

Sasaki, A., et al., "Overexpression of Plasma Membrane-Associated Sialidase Attenuates Insulin Signaling in Transgenic Mice," *The Journal of Biological Chemistry*, 278(30):27896-27902 (2003).

Shayman, J.A., et al., "Glucosphingolipid Dependence of Hoimone-Stimulated Inositol Trisphophate Formation," *J Biol. Chem.*, 265(21): 12135-12138 (1990).

Shayman, J.A., et al., "Modulation of Renal Epithelial Cell Growth by Glucosylceramide," *The Journal of Biological Chemistry*, 266(34):22968-22974 (1991).

Shukla, A., et al., "Metabolism of D-[³H]threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthesis and the synergistic action of an inhibitor of microsomal momooxygenase," *J. Lipid Research*, 32: 713-722 (1991).

Shukla, G., et al., "Rapid Kidney Changes Resulting From Glycosphingolipid Depletion by Treatment with a Glucosyltransferase Inhibitor," *Biochim. Biophys. Acta*, 1083: 101-108 (1991).

Shukla, G.S., et al., "Glucosylceramide Synthase of Mouse Kidney: Further Characterization with an Improved Assay Method," *Arch. Biochem. Biophys.*, 283(2): 372-378 (1990).

Skehan, P., et al., "New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening," *J. Natl. Cancer Inst.*, 82(13): 1107-1112 (1990).

Strum, J.C., et al.,"1- β - $_D$ -Arabinofuranosylcytosine Stimulates Ceramide and Diglyceride Formation in HL-60- Cells," *J. Biol. Chem.*, 269(22): 15493-15497 (1994).

Svensson, M., et al., "Epithelial Glucosphingolipid Express as a Determinant of Bacterial Adherence and Cytokine Production", *Infection and Immunity*, 62:10 pp. 4404-4410 (1994). Tagami, S., et al., "Ganglioside GM3 Participates in the Pathological Conditions of Insulin Resistance", *The Journal of Biological Chemistry*, 227(5):3085-3092 (2002).

Tang, W., et al., "Phorbol Ester Inhibits 13-Cis-Retinoic Acid-Induced Hydrolysis of Phosphatidylinositol 4,5-Biophosphate in cultured Murine Keratinocytes: A Possible Negative Feedback Via Protein Kinase C-Activation," *Cell Bioch. Funct.*, 9: 183-191 (1991).

Uemura, K., et al., "Effect of an Inhibitor of Glucosylceramide Synthesis on Cultured Rabbit Skin Fibroblasts," *J. Biochem.*, (Tokyo) 108(4): 525-530 (1990).

Vunnum, R.,R., et al.,, "Analogs of Ceramide That Inhibit Glucocerebroside Synthetase in Mouse Brain," *Chemistry and Physics of Lipids*, LD. Bergelson, et al., eds. (Elsevier/North-Holland Scientific Publishers Ltd.), 26: 265-278 (1980).

Wermuth, C.G., et al., "Designing Prodrug and Bioprecursors I: Carrier Prodrug", *The Practice of Medicinal Chemistry*, C.G., Wermuth, ed. (CA: Academic Press Limited), pp. 671-696 (1996).

Wong, C-H., et al., "Synthesis and Evaluation of Homoazasugars as Glycosidase Inhibitors," *J. Org. Chem.*, 60: 1492-1501, (1995).

Yamashita, T., et al., "Enhanced insulin sensitivity in mice lacking ganglioside GM3", *Proc. Natl. Acad. Scl.*, 100(6): 3445-3449 (2003). Zador; I., et al. "A Role for Glycosphingolipid Accumulation in the Renal Hypertrophy of Streptozotocin-induced Diabetes Mellitus", *J. Clin. Invest.*, 91: 797-803 (1993).

Zhao, H., et al., "Inhibiting glycosphingolipid systhesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes.", *Diabetes*, 56(5): 1210-1218 (2007).

Ziche, M. et al., "Angiogenesis Can Be Stimulated or Repressed in Vivo by a Change in GM3: GD3 Ganglioside Ratio," *Lab. Invest.*, 67:711-715 (1992).

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 11/667,224; Date Mailed: Apr. 22, 2011, titled: "Method of Treating Diabetes Mellitus".

Tay-Sachs, URL: http://www.ninds.nih.gov/disorders/taysachs/taysachs.htm. National Institute of Health of Neurological Disorders and Stroke. Accessed online Sep. 9, 2011.

Office Action for U.S. Appl. \bar{No} . 12/601,871 dated Sep. 21, 2011, Titled: "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors".

Non-Final Office Action for U.S. Appl. No. 12/227,076 mailed on Nov. 23, 2011, titled: "Methods of Treating Fatty Liver Disease". Ong, et al., "Nonalcoholic Fatty Liver Disease and the epidemic of Obesity", Cleveland Clinic Journal of Medicine, 71(8): 657-664

Nicolaus, B.J.R., "Symbiotic Approach to Drug Design", *Decision Making in Drug Research*, XP-001111439, pg. 1-14 (1983).

Schwimmer, J.B., et al., "Obesity, Insulin Resistance, and and Other Clinicopathological Correlates of Pediatric Nonalcoholic Fatty Liver Disease", *Journal of Pediatrics*, 143(4): 500-505 (2003).

Office Action dated Mar. 29, 2012 for U.S. Appl. No. 12/601,871, Titled: "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors".

Abe, A., et al., "Use of Sulfobutyl Ether β-Cyclodextrin as a Vehicle for d-threo-1-Phenyl-2-decanoylamino-3-morpholinopropanol-Related Glucosylceramide Synthase Inhibitors", *Analytical Biochemistry*, vol. 287, pp. 344-347 (2000).

Levery, S.B., et al., "Disruption of the glucosylceramide biosynthetic pathway in *Aspergillus nidulans* and *Aspergillus fumigatus* by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth", *FEBS* Letters, vol. 525, pp. 59-64 (2002).

Office Action for U.S. Appl. No. 12/227,076 dated Mar. 20, 2012, titled: "Methods of Treating Fatty Liver Disease".

Notification Concerning Transmittal of Copy of International Preliminary Report on Patentability for International Application No. PCT/US2009/005435 dated Apr. 5, 2011.

Non-Final Office for U.S. Appl. No. 12/681,291, titled "Method of Treating Polycystic Kidney Diseases with Ceramide Derivatives", dated: Oct. 18, 2013.

Non-Final Office for U.S. Appl. No. 13/193,990, titled "Method of Treating Diabetes Mellitus", dated: Feb. 20, 2014.

Non-Final Office for U.S. Appl. No. 13/595,349, titled "2-AcylaminopropoanolType Glucosylceramide Synthase Inhibitors", dated: Dec. 19, 2013.

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/227,076; titled: "Methods of Treating Fatty Liver Disease" Date Mailed: Jun. 4, 2013.

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/227,076; titled: "Methods of Treating Fatty Liver Disease" Date Mailed: Dec. 23, 2013.

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/762,102; titled: "Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Disease" Date Mailed: Jan. 9, 2014.

Office Action dated May 28, 2013 for U.S. Appl. No. 13/762,102; titled: "Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Disease".

European Search Report for EP Patent Application No. 12007327.5, "Method of Treating Polycystic Kidney Diseases With Ceramide Derivatives" dated Apr. 11, 2013.

(56)References Cited

OTHER PUBLICATIONS

European Search Report, European Application No. 13154949.5, "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" dated Jul. 12, 2013.

European Search Report, European Application No. 13154955.2, "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" dated Jul. 10, 2013.

European Search Report, European Application No. 13154967.7, "2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors" dated Jul. 18, 2013.

European Search Report, European Application No. 13154970.1, "2-Acylaminopropoanol-Type Glucosylceramide Synthesis Inhibitors" dated Jul. 10, 2013.

Husain, A., and Ganem, B., "syn-Selective additions to Garner aldehyde: synthesis of a potent glucosylceramide synthase inhibitor", Tetrahedron Letters, 43: 8621-8623 (2002).

Kharkevich, D.A., "Pharmacology", M., Medicament, 47-48 (1987). Koga, K., and Yamada, S., "Stereochemical Studies. X. Effects of Neighboring Functional Groups on 1,2-Asymmetric Induction in the Reduction of Propiophenone Derivatives with Sodium Borohydride", Chemical and Pharmaceutical Bulletin, 20(3): 526-538 (1972).

Yew, N.S., et al., "Increased Hepatic Insulin Action in Diet-Induced Obese Mice Following Inhibition of Glucosylceramide Synthase" PLoS one, 5(6): 1-9 (Jun. 2010).

Zhao, H., et al., "Inhibiting Glycosphingolipid Synthesis Ameliorates Hepatic Steatosis in Obese Mice" Hepatology, pp. 85-93 (Jul. Notice of Allowance and Fee(s) Due for U.S. Appl. No. 12/681,291; titled: "Method of Treating Polycystic Kidney Diseases With Ceramide Derivatives" Date Mailed: Aug. 4, 2014.

Notice of Allowance and Fee(s) Due for U.S. Appl. No. 13/595,349; titled: 2-Acylaminopropoanol-Type Glucosylceramide Synthase Inhibitors Date Mailed: Sep. 10, 2014.

Grcevska, L., et al., "Treatment with Steroids and Cyclophosphamide Collapsing Glomerulopathy and Focal Segmental Glomerulosclerosis-Comparative Study," Nephrology, Dialysis Transplantation, 15(9): A89 (2000). Huynh-Do, U., "Membranose Glomerulonephritis," Nephrologe,

2:20-26 (2007).

Klein, M., et al., "Cyclosporine Treatment of Glomerular Diseases," Annu. Rev. Med., 50:1-15 (1999).

Mok, Chi Chiu, et al., "Long-term Outcome of Diffuse Proliferative Lupus Glomerulonephritis Treated with Cyclophosphamide," The American Journal of Medicine, 119(4): 355.e25-355.e33

Deshmukh, G.D., et al., "Abnormalities of glycosphingolipid, sulfatide, and ceramide in the Polycystic (cpk/cpk) mouse", Journal of Lipid Research, 35: 1611-1618 1994).

Extended European Search Report for European Application No. EP 15 16 2842, "Methods of Treating Fatty Liver Disease", Date of completion: Jul. 24, 2015.

Non-Final Office Action for U.S. Appl. No. 14/255,634, titled: "Glucosylceramide Synthase Inhibition for the Treatment of Collapsing Glomerulopathy and Other Glomerular Disease" Date Mailed: Aug. 11, 2015.

Non-Final Office Action for U.S. Appl. No. 14/464,432, titled: "Method of Treating Diabetes Mellitus" Date Mailed: Sep. 9, 2015.

* cited by examiner

2-ACYLAMINOPROPOANOL-TYPE GLUCOSYLCERAMIDE SYNTHASE **INHIBITORS**

RELATED APPLICATION(S)

This application is a continuation of U.S. application Ser. No. 13/122,135 filed on Mar. 31, 2011 which is the U.S. National Stage of International Application No. PCT/ US2009/005435, filed Oct. 2, 2009, which designates the 10 U.S., published in English, and claims the benefit of U.S. Provisional Application No. 61/102,541, filed Oct. 3, 2008. The entire teachings of the above applications are incorporated herein by reference.

BACKGROUND OF THE INVENTION

Gangliosides, such as GM1, GM2 and GM3, are glycosphingolipids (GSLs) comprised of ceramide and at least one acidic sugar. Gangliosides are generally found in the outer 20 leaflet of the plasma membrane (Nojri et al., Proc. Natl. Acad. ScL USA 83:782 (1986)). Gangliosides are involved in cell signaling and act as modulators of receptor activity (Yamashita et al., Proc. Natl. Acad. ScL USA 100(6):3445 (2003)). A number of GSLs are derived from glucosylceram- 25 ide, which is enzymatically formed from ceramide and UDPglucose. The formation of glucosylceramide is catalyzed by glucosylceramide synthase.

It has been found that the level of GSLs controls a variety of cell functions, such as growth, differentiation, adhesion 30 between cells or between cells and matrix proteins, binding of microorganisms and viruses to cells, and metastasis of tumor cells. In addition, the glucosylceramide precursor, ceramide, may cause differentiation or inhibition of cell growth and be involved in the functioning of vitamin D₃, tumor necrosis 35 factor-α, interleukins, and apoptosis. Sphingols, precursors of ceramide, and products of ceramide catabolism have also been shown to influence many cell systems, possibly by inhibiting protein kinase C.

Defects in GSL metabolizing enzymes can cause serious 40 and pharmaceutically acceptable salts thereof, wherein: disorders. For example, Tay-Sachs, Gaucher's, and Fabry's diseases result from enzymatic defects in the GSL degradative pathway and the accumulation of GSL. In particular, GM1 accumulates in the nervous system leading to mental retardation and liver enlargement. In Tay-Sachs, GM2 accu- 45 mulates in brain tissue leading to mental retardation and blindness. These observations suggest that inhibitors of glvcosylceramide synthase can be effective in treating lysosomal diseases such as Tay-Sachs, Gaucher's, and Fabry's diseases. Indeed, glucosylceramide synthase inhibitors have been 50 described for this purpose (see U.S. Pat. Nos. 6,569,889; 6,255,336; 5,916,911; 5,302,609; 6,660,749; 6,610,703; 5,472,969; and 5,525,616).

Recently it has been disclosed that the interruption of the insulin induced signaling cascade may be associated with 55 aliphatic group, or a substituted or unsubstituted aryl group; elevated levels of GM3. It has also been suggested that the cytokine tumor necrosis factor- α (TNF- α), implicated in insulin resistance, results in increased expression of GM3 (Tagami et al., J. Biol. Chem. 277(5):3085 (2002)). Also, it has been disclosed that mutant mice lacking GM3 synthase, 60 and thus lacking in GM3, are protected from insulin resistance caused by a high-fat diet (Yamashita et al., Proc. Natl. Acad. Sc. USA 100:3445-3449 (2003)). These observations suggest that inhibitors of glycosylceramide synthase can be effective in treating diabetes. Indeed, inhibitors of glucosyl- 65 ceramide synthase have been proposed for treating Type 2 diabetes (see WO 2006/053043).

2

Therefore, agents which inhibit glucosylceramide synthesis, or reduce intracellular content of GSLs, such as GM3, have the potential to treat conditions associated with altered GSL levels and/or GSL precursor levels. There is a need for additional agents which can act as glucosylceramide synthase inhibitors.

SUMMARY OF THE INVENTION

It has now been discovered that 2-acylaminopropoanol derivatives represented by Structural Formula (I) below can effectively inhibit glycosphingolipid synthesis, such as GM3 synthesis. As such, these compounds can be used for treating diabetes or lysosomal storage diseases, such as Tay-Sachs, Gaucher's or Fabry's disease. In addition, a number of these compounds were tested and found to significantly inhibit glycosphingolipid synthesis in animal tissues and to have high metabolic stability at the liver. These compounds can also be used for a subject having polycystic kidney disease (PKD). Based upon this discovery, novel 2-acylaminopropoanol derivatives, pharmaceutical compositions comprising the 2-acylaminopropoanol derivatives, and methods of treatment using the 2-acylaminopropoanol derivatives are disclosed herein.

In one embodiment, the present invention is directed to compounds represented by Structural Formula (I):

$$\begin{array}{c}
OY \\
R^1 \\
N(R^2R^3)
\end{array}$$

$$X - R^4$$

R¹ is a substituted or unsubstituted aryl group;

Y is —H, a hydrolyzable group, or a substituted or unsubstituted alkyl group.

R² and R³ are each independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R² and R³ taken together with the nitrogen atom of N(R²R³) form a substituted or unsubstituted nonaromatic heterocyclic ring;

X is
$$-(CR^5R^6)_n$$
-Q-; Q is $-O$ —, $-S$ —, $-C(O)$ —, $-C(S)$ —, $-C(O)$ O—, $-C(S)$ O—, $-C(S)$ S—, $-C(O)$ NR⁷—, $-NR^7$ —, $-NR^7$ C(O)—, $-NR^7$ C(O)NR⁷—, $-OC$ (O)—, $-SO_3$ —, $-SO$ —, $-S(O)_2$ —, $-SO_2$ NR⁷—, or $-NR^7SO_2$ —; and R⁴ is —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group;

Alternatively, X is $\bigcirc \bigcirc$, $\bigcirc S$ or $\bigcirc NR^7$; and R^4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group;

Alternatively, X is $-(CR^5R^6)_n$; and R^4 is a substituted or unsubstituted cyclic alkyl group, or a substituted or unsubstituted cyclic alkenyl group, a substituted or unsubstituted aryl group, —CN, —NCS, —NO₂ or a halogen;

Alternatively, X is a covalent bond; and R⁴ is a substituted or unsubstituted aryl group;

R⁵ and R⁶ are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkoxy group, a

substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group;

n is 1, 2, 3, 4, 5 or 6;

Each R⁷ is independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl 5 group, or R⁷ and R⁴ taken together with the nitrogen atom of NR⁷R⁴ form a substituted or unsubstituted non-aromatic heterocyclic group.

In another embodiment, the present invention is directed to a pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound represented by Structural Formula (1) or a pharmaceutically acceptable salt

In yet another embodiment, the present invention is directed to a method of treating a subject having type 2 diabetes, comprising administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt

A method of treating a subject having renal hypertrophy or 20 hyperplasia associated with diabetic nephropathy is also included in the invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

A method of decreasing plasma TNF- α in a subject in need thereof is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

A method of lowering blood glucose levels in a subject in need thereof is also included in the present invention. The method comprises administering to the subject a therapeuti-

peutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

A method of treating a subject with polycystic kidney 55 disease is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

Also, included in the present invention is the use of a 60 compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof for the manufacture of a medicament. The medicament is for treating a subject having type 2 diabetes; for treating a subject having renal hypertrophy or hyperplasia associated with diabetic nephropathy; for 65 decreasing plasma TNF- α in a subject in need thereof; for lowering blood glucose levels in a subject in need thereof; for

decreasing glycated hemoglobin levels in a subject in need thereof; for inhibiting glucosylceramide synthase or lowering glycosphingolipid concentrations in a subject in need thereof; or for treating a subject with Tay-Sachs, Gaucher's or Fabry's disease. Alternatively, the medicament is for treating a subject having polycystic kidney disease.

The compounds of the invention are inhibitors of glucosylceramide synthesis. As such, they can be used for treating various disorders associated with GSL metabolism, including diabetes and lysosomal storage diseases. The compounds of the invention can effectively inhibit glucosylceramide synthesis and at the same time have high metabolic stability at the liver. For example, the compounds of the invention can have a clearance value of less than 50%, and commonly less than 30%, at the liver relative to hepatic blood flow.

The present invention has many advantages. In particular, the present invention provides a treatment for PKD that addresses the underlying disease state, rather than simply ameliorating symptoms that are associated with PKD. Such compounds may reduce the need for kidney dialysis or transplant in patients suffering from PKD.

DETAILED DESCRIPTION OF THE INVENTION

In one embodiment, the invention is directed to a compound represented by Structural Formula (I), or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formula (I) is provided in the following paragraphs:

R¹ is a substituted or unsubstituted aryl group, such as a substituted or unsubstituted phenyl group. Preferably, R¹ is an aryl group optionally substituted with one or more substitumethod comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

A method of decreasing glycated hemoglobin levels in a subject in need thereof is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

A method of inhibiting glucosylceramide synthase or lowering glycosphingolipid concentrations in a subject in need thereof is also included in the present invention. The method of treating a subject with Tay-Sachs, Gaucher's or Fabry's disease is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

A method of inhibiting glucosylceramide synthase or lowering glycosphingolipid concentrations in a subject in need thereof is also included in the present invention. The method of treating a subject with Tay-Sachs, Gaucher's or Fabry's disease is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

A method of treating a subject with Tay-Sachs, Gaucher's or Fabry's disease is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

A method of treating a subject with Tay-Sachs, Gaucher's or Fabry's disease is also included in the present invention. The method comprises administering to the subject a therapeutically effective amount of a compound represented by Structural Formula (I) or a pharmaceutically acceptable salt thereof.

A meth ents selected from halogen, alkyl, haloalkyl, Ar¹, —OR³⁰, $-[CH_2]_a$ —. More preferably, R^1 is an aryl group, such as a phenyl group, optionally substituted with one or more halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR³⁰ -[CH₂]₄—. More preferably, R¹ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl,

C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH₂]_n—O—, and $-[CH_2]_a$. Even more preferably, R^1 is a phenyl group optionally substituted with —OH, —OCH₃, —OC₂H₅ or -O $[CH_2]_p$ -O. Even more preferably, R^1 is

where r is 1, 2, 3 or 4, preferably 1 or 2.

Y is —H, a hydrolyzable group, or a substituted or unsubstituted alkyl group. Examples of hydrolyzable groups 15 include -C(O)R, -C(O)OR, -C(O)NRR', C(S)R, -C(S)OR,—C(O)SR or —C(S)NRR'. Preferably, Y is —H, —C(O) R, —C(O)OR or —C(O)NRR'; more preferably, —H.

R² and R³ are each independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubsti- 20 tuted aryl group, or R² and R³ taken together with the nitrogen atom of N(R²R³) form a substituted or unsubstituted nonaromatic heterocyclic ring. Preferably, R2 and R3 taken together with the nitrogen atom of N(R²R³) form a 5- or 6-membered, optionally-substituted non-aromatic heterocy- 25 clic ring. More preferably, —N(R²R³) is an optionally substituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group. Even more preferably, $-N(R^2R^3)$ is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, preferably an unsubstituted pyrro- 30 lidinyl group.

Suitable substituents for the aliphatic and aryl groups represented by R² and R³, and suitable substituents for the nonaromatic heterocyclic ring represented by N(R²R³) each mucependently include halogen, alkyl, haloalkyl, $-OR^{40}$, 35 -O(haloalkyl), $-SR^{40}$, $-NO_2$, -CN, $-N(R^{41})_2$, $-NR^{41}C(O)R^{40}$, $-NR^{41}C(O)OR^{42}$, $-N(R^{41})C(O)N$ $(R^{41})_2$, $-C(O)R^{40}$, $-C(S)R^{40}$, $-C(O)OR^{40}$, $-OC(O)R^{40}$, $-C(O)R^{40}$, $-C(O)R^{40}$, $-C(O)R^{40}$, $-SO_2N(R^{41})_2$, $-S(O)R^{42}$, $-SO_3R^{40}$, $-SP_2$, independently include halogen, alkyl, haloalkyl, —OR⁴⁰, 35 O—, —C(S)S—, —C(O)NR⁷— or —OC(O)—. Even more Ar². Preferably, suitable substituents for the aliphatic and aryl groups represented by R² and R³, and suitable substituents for the non-aromatic heterocyclic ring represented by $N(R^2R^3)$ each independently include halogen, alkyl, haloalkyl, 50 each independently include halogen, alkyl, haloalkyl, $-OR^{40}$, -O(haloalkyl), $-SR^{40}$, $-NO_2$, -CN, $-N(R^{41})_2$, $-C(O)R^{40}$, $-C(S)R^{40}$, $-C(O)OR^{40}$, $-OC(O)R^{40}$, $-C(O)N(R^{41})_2$, Ar^2 , V_2 — Ar^2 , $-V_2$ — OR^{40} , $-V_2$ —O(haloalkyl), $-V_2$ — SR^{40} , $-V_2$ — NO_2 , $-V_2$ —CN, $-V_2$ — $N(R^{41})_2$, $-V_2$ — $C(O)R^{40}$, $-V_2$ — $C(S)R^{40}$ erably, suitable substituents for the aliphatic and aryl groups represented by R² and R³, and suitable substituents for the non-aromatic heterocyclic ring represented by N(R²R³) each independently include halogen, C1-C10 alkyl, C1-C10 60 haloalkyl, —O(C1-C10 alkyl), —O(phenyl), —O(C1-C10 haloalkyl), —S(C1-C10 alkyl), —S(phenyl), —S(C1-C10 alkyl)haloalkyl), —NO₂, —CN, —NH(C1-C10 alkyl), —N(C1-C10 alkyl)₂, —NH(C1-C10 haloalkyl), —N(C1-C10 haloalkyl)₂, —NH(phenyl), —N(phenyl)₂, —C(O)(C1-C10 65 alkyl), —C(O)(C1-C10 haloalkyl), —C(O)(phenyl), —C(S) (C1-C10 alkyl), --C(S)(C1-C10 haloalkyl), --C(S)(phenyl),

—C(O)O(C1-C10 alkyl), —C(O)O(C1-C10 haloalkyl), —C(O)O(phenyl), phenyl, — V_2 -phenyl, — V_2 —O-phenyl, $-V_2$ —O(C1-C10 alkyl), $-V_2$ —O(C1-C10 haloalkyl), $-V_2$ —S-phenyl, $-V_2$ —S(C1-C10 alkyl), $-V_2$ —S(C1-C10 alkyl), — V_2 — $N(C1-C10 alkyl)_2$, — V_2 — $NH(C1-C10 alkyl)_2$ $haloalkyl), \\ --V_2 --N(C1\text{-}C10 \ haloalkyl)_2, \\ --V_2 --NH(phe-language)_2 \\ --NH(phe$ $-V_2$ —C(O)(C1-C10 haloalkyl), $-V_2$ —C(O)(phenyl), $-V_2$ -C(S)(C1-C10 $-V_2$ -C(S)(C1-C10 alkyl), alkyl), — V_2 — $C(O)O(C1-C10\ haloalkyl)$, — V_2 —C(O)O(phenyl), --V₂--OC(O)(C1-C10 alkyl), --V₂--OC(O)(C1-C10 haloalkyl), —V₂—OC(O)(phenyl), —O—V₂-phenyl and —S—V₂-phenyl. Even more preferably, suitable substituents for the aliphatic and aryl groups represented by R² and R³, and suitable substituents for the non-aromatic heterocyclic ring represented by $N(R^2R^3)$ each independently include halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxy, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl, C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.

X is $-(CR^5R^6)_n$ -Q-; Q is -O-, -S-, -C(O)-, -C(S)—, -C(O)O—, -C(S)O—, -C(S)S—, -C(O) NR^7 —, $-NR^7$ —, $-NR^7C(O)$ —, $-NR^7C(O)NR^7$ — (O)—, $-SO_3$ —, $-SO_-$, $-S(O)_2$ —, $-SO_2NR^7$ —, or $-NR^7SO_2$ —; and R^4 is —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group. Preferably, Q is —O—, —S—, —C(O)—, —C(S)—, —C(O)O—, —C(S)O—, —C(S)S—, —C(O)NR⁷—, —NR⁷C(O)NR⁷—, —OC(O)—, —SO₃—, —SO—, —S $(O)_2$ —, — SO_2NR^7 — or — NR^7SO_2 —. More Preferably, Q is -O, -S, -C(O), -C(S), -C(O)O, -C(S)preferably, Q is —O—, —S—, —C(O)— or —C(S)—.

Alternatively, X is -O, -S or $-NR^7$; and R^4 is a substituted or unsubstituted aliphatic group, or substituted or unsubstituted aryl group.

In another alternative, X is $-(CR^5R^6)_n$; and R^4 is a substituted or unsubstituted cyclic alkyl (e.g., C3-C8) group, or a substituted or unsubstituted cyclic alkenyl (C3-C8) group, a substituted or unsubstituted aryl group, —CN, -NCS, —NO₂ or a halogen.

In another alternative, X is a covalent bond; and R⁴ is a substituted or unsubstituted aryl group.

Preferably, R⁴ is an optionally substituted aliphatic, such as a lower alkyl, or aryl group. More preferably, R⁴ is an optionally substituted aryl or lower arylalkyl group. Even more preferably, R⁴ is selected from the group consisting of:

wherein each of rings A-Z5 is optionally and independently substituted; and each x is independently 0 or 1, specifically x is 0. Even more preferably, R^4 is an optionally substituted

$$--(\mathrm{CH}_2)_x - \prod_{i=1}^{n} \mathrm{A}$$

group. Alternatively, R^4 is an optionally substituted phenyl group. Alternatively, R^4 is an aryl group substituted with Ar^3 , such as a phenyl group substituted with Ar^3 . It is noted that, as 45 shown above, rings A-Z5 can be attached to variable "X" of Structural Formula (I) through — $(CH_2)_x$ —at any ring carbon of rings A-Z5 which is not at a position bridging two aryl groups. For example, R^4 represented by

$$-(CH_2)_x$$
 N
 J
 K

means that R^4 is attached to variable "X" through either ring J or ring K.

Preferred substituents for each of the aliphatic group and the aryl group represented by R⁴, including lower alkyl, arylalkyl and rings A-Z5, include halogen, alkyl, haloalkyl, Ar³, Ar³—Ar³, —OR⁵0, —O(haloalkyl), —SR⁵0, —NO₂, —CN, —NCS, —N(R⁵1)₂, —NR⁵1C(O)R⁵0, —NR⁵1C(O)OR⁵2, —N(R⁵1)C(O)N(R⁵1)₂, —C(O)R⁵0, —C(S)R⁵0, —C(O)OR⁵0, —OC(O)R⁵0, —C(O)N(R⁵1)₂, —S(O)₂R⁵0, —SO₂N(R⁵1)₂, —S(O)R⁵2, —SO₃R⁵0, —NR⁵1SO₂N(R⁵1)₂, —NR⁵1SO₂R⁵2, —V₄—Ar³, —V—OR⁵0, —V₄—O(ha-

 $\begin{array}{lll} loalkyl), & -V_4 - SR^{50}, & -V_4 - NO_2, & -V_4 - CN, & -V_4 - N(R^{51})_2, & -V_4 - NR^{51}C(O)R^{50}, & -V_4 - NR^{51}CO_2R^{52}, \\ & -V_4 - N(R^{51})C(O)N(R^{51})_2, & -V_4 - C(O)R^{50}, & -V_4C(S)\\ & -V_5 - N(R^{51})C(O)N(R^{51})_2, & -V_5 - N(R^{51})C(O)R^{50}, & -V_5 - N(R^{51})C(O)R^{50}$ $-S - V_4 - Ar^3$, $-S - V_5 - N(R^{51})_2$ $-N(R^{51})-V_4$ $\begin{array}{lll} & -\mathrm{N}(\mathsf{R}^{51}) - \mathrm{V}_5 - \mathrm{N}(\mathsf{R}^{51})_2, & -\mathrm{N}(\mathsf{R}^{51})(\mathsf{O}) - \mathrm{V}_4 - \mathrm{N}(\mathsf{R}^{51})_3 \\ & -\mathrm{N}(\mathsf{R}^{51}) - \mathrm{V}_5 - \mathrm{N}(\mathsf{R}^{51})_2, & -\mathrm{N}(\mathsf{R}^{51})(\mathsf{O}) - \mathrm{V}_4 - \mathrm{N}(\mathsf{R}^{51})_3 \\ & -\mathrm{N}(\mathsf{C}) - \mathrm{V}_4 - \mathrm{A} r^3, & -\mathrm{C}(\mathsf{O}) - \mathrm{V}_4 - \mathrm{N}(\mathsf{R}^{51})_2, & -\mathrm{C}(\mathsf{S}) - \mathrm{V}_4 \\ & -\mathrm{C}(\mathsf{O}) - \mathrm{V}_4 - \mathrm{A} r^3, & -\mathrm{C}(\mathsf{S}) - \mathrm{V}_4 - \mathrm{N}(\mathsf{R}^{51})_2, & -\mathrm{C}(\mathsf{S}) - \mathrm{V}_4 \end{array}$ $-NR^{51}C(O)-V_4-N(R^{51})_2$ $-C(O)-V_4-N(R^{51})_2$ $-C(O)O-V_5-N(R^{51})_2$, $-C(O)O-V_4-Ar^3$ -O, -S, $[CH_2]_p$, and $-[CH_2]_a$. More preferably, substituents for each of the aliphatic group and the aryl group represented by R⁴, including lower alkyl, arylalkyl and rings A-Z5, include halogen, C1-C10 alkyl, C1-C10 haloalkyl, Ar³, Ar³—Ar³, —OR⁵0, —O(haloalkyl), —SR⁵0, —C(O)QR⁵0, —C(O)QR⁵0, —C(O)QR⁵0, —C(O)QR⁵0, —C(O)QR⁵0, —C(O)QR⁵0, —V₄—Ar³, —V—OR⁵0, —V₄—O(haloalkyl), —V₄—SR⁵0, —V₄—P(O)QR⁵0, —V₄—Q(O)QR⁵0, —V₄—Q(O)QR⁵1)QR Yamana group represented by R4, including lower alkyl, arylalkyl and substituents for each of the aliphatic group and the aryl group represented by R⁴, including lower alkyl, arylalkyl and rings 40 A-Z5, include halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-10 alkoxy, --O- $[CH_2]_p$ —O— or — $[CH_2]_q$ —. Even more preferably, substituents for each of the aliphatic group and the aryl group represented by R⁴, including lower alkyl, arylalkyl and rings A-Z5, include halogen, cyano, amino, nitro, Ar³, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy. Even more preferably, substituents for each of the aliphatic and aryl groups represented by R⁴, including lower 50 alkyl, arylalkyl and rings A-Z5, include —OH, —OCH₃, $-OC_2H_5$ and $-O-[CH_2]_p$ -O-. Preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alky-55 lamino, C1-C10 dialkylamino, $-OR^{50}$, $-Ar^3$, $-V_4$ — Ar^3 , $-V_4$ —O(C1-C10 haloalkyl), $-V_4$ —O(C1-C10 haloalkyl), $-O-V_4$ — Ar^3 , -O— $[CH_2]_p$ —O— and $-[CH_2]_q$ —. More preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-10 alkoxy, —O- $[CH_2]_p$ —O— and — $[CH_2]_q$ —. Even more preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH₃ and —OC₂H₅. Specifically, when R⁴ is phenyl ring A, at least one of the substituents of ring A is at the para position.

R⁵ and R⁶ are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group. Preferably, R⁵ and R⁶ are each independently —H; —OH; a halogen; or a lower alkoxy or lower alkyl group. More preferably, R⁵ and R⁶ are each independently —H, —OH or a halogen. Even more preferably, R⁵ and R⁶ are each independently —H.

Each R⁷ is independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl 10 group, or R⁷ and R⁴ taken together with the nitrogen atom of NR⁷R⁴ form a substituted or unsubstituted non-aromatic heterocyclic group. Preferably, each R⁷ is independently —H, an aliphatic group or phenyl. Even more preferably, each R⁷ is independently —H or C1-C6 alkyl.

Each n is independently 1, 2, 3, 4, 5 or 6. Preferably, each n is independently 1, 2, 3 or 4. Alternatively, each n is independently 2, 3, 4 or 5.

Each p is independently 1, 2, 3 or 4, preferably 1 or 2. Each q is independently 3, 4, 5 or 6, preferably 3 or 4. Each p' is independently 1, 2, 3 or 4, preferably 1 or 2.

Each q' is independently 3, 4, 5 or 6, preferably 3 or 4. Each V_o is independently a C1-C10 alkylene group, preferably C1-C4 alkylene group.

Each V_1 is independently a C2-C10 alkylene group, specifically C2-C4 alkylene group.

Each V₂ is independently a C1-C4 alkylene group.

Each V_4 is independently a C1-C10 alkylene group, preferably a C1-C4 alkylene group.

Each V_5 is independently a C2-C10 alkylene group, pref- 30 erably a C2-C4 alkylene group.

Each Ar¹ is an aryl group optionally and independently substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and 35 haloalkyl. Preferably, Ar¹ is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, 40 C1-C6 alkylcarbonyl and C1-C6 haloalkyl. More preferably, Ar¹ is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 45 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each Ar² is an aryl group optionally and independently substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, 50 hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino.

Each Ar³ is independently an aryl group, such as phenyl, each optionally substituted with one or more substituents 55 selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and haloalkyl. Preferably, Ar³ is independently an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, 60 C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino. Even more preferably, Ar³ is independently an aryl group each optionally substituted with one or 65 more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy,

10

nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.

Each R³⁰ is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl and alkylcarbonyl. Preferably, each R³⁰ is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 20 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl. More preferably, each R³⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.

Each R^{31} is independently R^{30} , $-CO_2R^{30}$, $-SO_2R^{30}$ or $-C(O)R^{30}$; or $-N(R^{31})_2$ taken together is an optionally substituted non-aromatic heterocyclic group. Preferably, each R^{31} is independently R^{30} , or $-N(R^{31})_2$ is an optionally substituted non-aromatic heterocyclic group.

Each R³² is independently an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl and alkylcarbonyl. Preferably, each R32 is independently an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl. More preferably, each R32 is independently a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C1

dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl and C1-C6 alkylcarbonyl.

11

Each R⁴⁰ is independently hydrogen; an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkyl, hydroxy, C1-C6 dialkylamino, C1-C6 alkylcarbonyl, C1-C6 haloalkyl, hydroxy, C1-C6 dialkylamino

Each R^{41} is independently R^{40} , — CO_2R^{40} , — SO_2R^{40} or — $C(O)R^{40}$; or — $N(R^{41})_2$ taken together is an optionally substituted non-aromatic heterocyclic group.

Each R⁴² is independently an aryl group, such as a phenyl group, optionally substituted with one or more substituents 20 selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with 25 one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylcarbonyl, C1-C6 dialkylamino

Each R⁵⁰ is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl 35 group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl. Preferably, each R^{50} is independently hydrogen; an aryl 40 group, such as a phenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and 45 C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino 50 and C1-C6 dialkylamino.

Each R^{51} is independently R^{50} , $-CO_2R^{50}$, $-SO_2R^{50}$ or $-C(O)R^{50}$, or $-N(R^{51})_2$ taken together is an optionally substituted non-aromatic heterocyclic group. Preferably, each R^{51} is independently R^{50} , or $-N(R^{31})_2$ is an optionally substituted non-aromatic heterocyclic group.

Each R⁵² is independently an aryl group optionally substituted with one or two substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl. Preferably, each R⁵² is independently an aryl group, such as a phenyl group, optionally substituted with one or more substituents selected from

the group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6 haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialkylamino; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl, C1-C6

haloalkoxy, amino, C1-C6 alkylamino and C1-C6 dialky-

12

R and R' are each independently —H; a lower aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, -NCS, -NO₂, -NH₂, lower alkoxy, lower haloalkoxy and aryl; or an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, -OH, —CN, —NCS, —NO₂, —NH₂, lower alkoxy, lower haloalkoxy, lower aliphatic group and lower haloaliphatic group; or R and R' taken together with the nitrogen atom of NRR' form a non-aromatic heterocyclic ring optionally substituted with one or more substituents selected from the group consisting of: halogen; —OH; —CN; —NCS; —NO₂; -NH₂; lower alkoxy; lower haloalkoxy; lower aliphatic group optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, —CN, -NCS, -NO2, -NH2, lower alkoxy, lower haloalkoxy and aryl; and aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, -OH, —CN, —NCS, —NO₂, —NH₂, lower alkoxy, lower haloalkoxy, lower aliphatic group and lower haloaliphatic group. Preferably, R and R' are each independently —H; a lower aliphatic group; a lower aliphatic group substituted with phenyl; or an aryl group. More preferably, R and R' are each independently —H, C1-C4 alkyl, phenyl or benzyl.

A second set of values for the variables in Structural Formula (I) is provided in the following paragraphs:

Y is —H, —C(O)R, —C(O)OR or —C(O)NRR', preferably —H.

R¹ is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar^1 , $-OR^{30}$, -O(haloalkyl), $-SR^{30}$, $-NO_2$, -CN, -NCS, $-N(R^{31})_2$, $-NR^{31}C(O)R^{30}$, $-NR^{31}C(O)OR^{32}$, $-N(R^{31})C(O)N(R^{31})_2$, $-C(O)N(R^{31})_2$, $-C(O)N(R^{31})_2$, $-C(O)N(R^{31})_2$, $-C(O)N(R^{31})_2$, $-S(O)_2R^{30}$, $-C(O)R^{30}$, $-OC(O)R^{30}$, $-C(O)N(R^{31})_2$, $-S(O)_2R^{30}$, $-SO_2N(R^{31})_2$, $-S(O)R^{32}$, $-SO_3R^{30}$, $-NR^{31}SO_2N(R^{31})_2$, $-NR^{31}SO_2R^{32}$, $-V_o-Ar^1$, $-V_o-OR^3$, $-V_o-O(R^3)$, $-V_o-N(R^3)$, $-N_o-N(R^3)$, $-N_o-N(R^3$

 $-[CH_2]_q$ -.

Values and preferred values for the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.

A third set of values for the variables in Structural Formula (I) is provided in the following four paragraphs.

Y is —H, —C(O)R, —C(O)OR or —C(O)NRR', preferably —H.

 $R^{1} \text{ is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar^{1}, $-OR^{30}$, $-O(\text{haloalkyl}$), $-SR^{30}$, 10, $-NO_{2}$, $-CN$, $-NCS$, $-N(R^{31})_{2}$, $-NR^{31}C(O)R^{30}$, $-NR^{31}C(O)OR^{32}$, $-N(R^{31})C(O)N(R^{31})_{2}$, $-C(O)R^{30}$, $-C(S)R^{30}$, $-C(O)OR^{30}$, $-OC(O)R^{30}$, $-C(O)N(R^{31})_{2}$, $-S(O)_{2}R^{30}$, $-SO_{2}N(R^{31})_{2}$, $-S(O)R^{32}$, $-SO_{3}R^{30}$, $-NR^{31}SO_{2}N(R^{31})_{2}$, $NR^{31}SO_{2}N(R^{31})_{2}$, $-NR^{31}SO_{2}R^{32}$, 15, $-V_{o}-Ar^{1}$, $-V_{o}-OR^{30}$, $-V_{o}-O(\text{haloalkyl}$), $-V_{o}-SR^{30}$, $-V_{o}-NO_{2}$, $-V_{o}-N(R^{31})_{2}$, $-N(R^{31})_{2}$, $-N(R^{31})_{2}$,$

 R^2 and R^3 taken together with the nitrogen atom of $N(R^2R^3)$ form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring. Examples of suitable substituents for the non-aromatic heterocyclic ring represented by $-NR^2R^3$ are as described in the first set of values for 40 Structural Formula (I).

Values and preferred values for the remainder of the variables of Structural Formula (I) are as described above for the first set of values.

A fourth set of values for the variables in Structural For- 45 mula (I) is provided in the following paragraphs:

Y is —H, —C(O)R, —C(O)OR or —C(O)NRR', preferably —H.

 $\begin{array}{c} \mathring{R}^1 \text{ is an aryl group optionally substituted with one or more} \\ \text{substituents selected from the group consisting of halogen,} \\ 30 \text{ alkyl, haloalkyl, } & Ar^1, & -OR^{30}, & -O(\text{haloalkyl)}, & -SR^{30}, \\ -NO_2, & -CN, & -NCS, & -N(R^{31})_2, & -NR^{31}C(O)R^{30}, \\ -NR^{31}C(O)OR^{32}, & -N(R^{31})C(O)N(R^{31})_2, & -C(O)R^{30}, \\ -C(S)R^{30}, & -C(O)OR^{30}, & -OC(O)R^{30}, & -C(O)N(R^{31})_2, \\ -S(O)_2R^{30}, & -SO_2N(R^{31})_2, & -S(O)R^{32}, & -SO_3R^{30}, & 55 \\ -NR^{31}SO_2N(R^{31})_2, & -NR^{31}SO_2R^{32}, & -V_o - Ar^1, & -V_o \\ OR^{30}, & -V_o - O(\text{haloalkyl}), & -V_o - SR^{30}, & -V_o - NO_2, \\ -V_o - CN, & -V_o - N(R^{31})_2, & -V_o - NR^{31}C(O)R^{30}, & -V_o \\ NR^{31}CO_2R^{32}, & -V_o - N(R^{31})C(O)N(R^{31})_2, & -V_o - C(O) \\ R^{30}, & -V_o - C(S)R^{30}, & -V_o - CO_2R^{30}, & -V_o - SO_2N \\ (R^{31})_2, & -V_o - S(O)R^{32}, & -V_o - SO_3R^{30}, & -V_o \\ -N(R^{31})_2, & -V_o - NR^{31}SO_2R^{32}, & -O - V_o - Ar^1, \\ -O - V_1 - N(R^{31})_2, & -V_o - NR^{31}SO_2R^{32}, & -O - V_o - Ar^1, \\ -O - V_1 - N(R^{31})_2, & -S - V_o - Ar^1, & -S - V_1 - N(R^{31})_2, \\ -N(R^{31}) - V_o - Ar^1, & -N(R^{31}) - V_1 - N(R^{31})_2, & -NR - 65 \\ V_o - N(R^{31})_2, & -NR^{31}C(O) - V_o - Ar^1, & -C(O) - V_o - N \\ (R^{31})_2, & -C(O) - V_o - Ar^1, & -C(S) - V_o - N(R^{31})_2, \end{array}$

 $\begin{array}{l} -\text{C(S)} - \text{V}_o - \text{Ar}^1, \quad -\text{C(O)O} - \text{V}_1 - \text{N(R}^{31})_2, \quad -\text{C(O)O} - \text{V}_o - \text{Ar}^1, \quad -\text{O} - \text{C(O)} - \text{V}_1 - \text{N(R}^{31})_2, \quad -\text{O} - \text{C(O)} - \text{V}_o - \text{Ar}^1, \quad -\text{C(O)N(R}^{31}) - \text{V}_1 - \text{N(R}^{31})_2, \quad -\text{C(O)N(R}^{31}) - \text{V}_o - \text{Ar}^1, \quad -\text{S(O)}_2 - \text{V}_o - \text{N(R}^{31})_2, \quad -\text{S(O)}_2 - \text{V}_o - \text{Ar}^1, \quad -\text{S(O)}_2 - \text{N(R}^{31}) - \text{V}_1 - \text{N(R}^{31})_2, \quad -\text{SO}_2 \text{N(R}^{31}) - \text{V}_o - \text{Ar}^1, \quad -\text{S(O)} - \text{V}_o - \text{Ar}^1, \quad -\text{S(O)}_2 - \text{O} - \text{V}_1 - \text{N} - \text{N(R}^{31})_2, \quad -\text{S(O)}_2 - \text{O} - \text{V}_o - \text{Ar}^1, \quad -\text{N(O)}_2 - \text{O} - \text{V}_1 - \text{N} - \text{N(R}^{31})_2, \quad -\text{N(R}^{31})_2, \quad -\text{N(R}^{3$

R² and R³ taken together with the nitrogen atom of N(R²R³) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.

R⁵ and R⁶ are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.

Values and preferred values of the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.

A fifth set of values for the variables in Structural Formula (I) is provided in the following paragraphs:

Y is —H, —C(O)R, —C(O)OR or —C(O)NRR', preferably —H.

 R^1 is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, $Ar^1, -OR^{30}, -O(\text{haloalkyl}), -SR^{30}, -NO_2, -CN, -NCS, -N(R^{31})_2, -NR^{31}C(O)OR^{32}, -N(R^{31})C(O)N(R^{31})_2, -C(O)R^{30}, -C(S)R^{30}, -C(O)OR^{30}, -OC(O)R^{30}, -C(O)N(R^{31})_2, -S(O)_2R^{30}, -SO_2N(R^{31})_2, -S(O)R^{32}, -SO_3R^{30}, -NR^{31}SO_2N(R^{31})_2, -NR^{31}SO_2R^{32}, -V_o -Ar^1, -V_o -OR^{30}, -V_o -O(\text{haloalkyl}), -V_o -SR^{30}, -V_o -NO_2, -V_o -CN, -V_o -N(R^{31})_2, -V_o -NR^{31}C(O)R^{30}, -V_o -C(O)R^{30}, -V_o -C(S)R^{30}, -V_o -CO_2R^{30}, -V_o -C(O)R^{30}, -V_o -C(O)R^{31})_2, -V_o -R(R^{31})_2, -R(R^{31}$

R² and R³ taken together with the nitrogen atom of N(R²R³) form a 5- or 6-membered, optionally-substituted non-aromatic heterocyclic ring.

R⁴ is an aliphatic or aryl group each optionally substituted with one or more substituents. Examples of suitable substituents are as described above for the first set of values.

R⁵ and R⁶ are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.

Values and preferred values of the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.

A sixth set of values for the variables in Structural Formula (I) is provided in the following paragraphs:

Y is —H, —C(O)R, —C(O)OR or —C(O)NRR', preferably —H.

R¹ is an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, —OR³⁰, —O(haloalkyl), —SR³⁰, —NO₂,

R⁴ is an optionally substituted cyclic alkyl group, or an optionally substituted cyclic alkenyl group, an optionally substituted aryl group, —CN, —NCS, —NO₂ or a halogen. Examples of suitable substituents are as described above for the first set.

N(R²R³) form a 5- or 6-membered, optionally-substituted

non-aromatic heterocyclic ring.

 R^5 and R^6 are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.

Values and preferred values of the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.

A seventh set of values and preferred values for the variables in Structural Formula (I) is provided in the following paragraphs:

Values and preferred values of R¹, Y, R², R³, R⁵ and R⁶ are each independently as described above for the sixth set.

R⁴ is an optionally substituted cyclic alkyl group, or an ⁴⁵ optionally substituted cyclic alkenyl group, or an optionally substituted aryl group, specifically optionally substituted aryl group. Examples of suitable substituents are as described above for the first set.

Values and preferred values of the remainder of the variables of Structural Formula (I) are each independently as described above for the first set of values.

In a second embodiment, the compound of the invention is represented by Structural Formula (II), (III), (IV), (V), (VI), (VII) or (VIII):

-continued

OH
$$N(R^{2}R^{3})$$

$$+N$$

$$C(R^{5}R^{6})n-O-R^{4},$$
(III)

$$\begin{array}{c} \text{OH} \\ \\ \text{R}^1 \\ \\ \\ \text{HN} \\ \\ \text{O} \end{array} \\ \text{(CH}_2)n - \text{O} - \text{R}^4, \end{array}$$

$$\begin{array}{c} OH \\ R^{1} \\ \hline \\ N(R^{2}R^{3}) \\ \hline \\ O \\ (CR^{5}R^{6})n \end{array} \qquad \begin{array}{c} (V) \\ \\ R^{4}, \end{array}$$

$$(VI)$$

$$R^{1} \longrightarrow N(R^{2}R^{3})$$

$$O \longrightarrow (CH_{2})n \longrightarrow R^{4}$$

$$\begin{array}{c} \text{OH} \\ \text{N}(R^2R^3) \\ \text{O} \\ \text{O} \\ \text{R}^4, \end{array}$$

$$(XIII)$$

$$R^{1}$$

$$N(R^{2}R^{3})$$

$$N(R^{7}R^{4}),$$

or a pharmaceutically acceptable salt thereof. A first set of values for the variables of Structural Formulas (II)-(VIII) is provided in the following paragraphs:

R¹ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR³⁰, —SR³⁰, —N(R³¹)₂, Ar¹, —V_o—OR³⁰, —V_o—N(R³¹)₂, —V_o—Ar¹, —O—V_o—Ar¹, —O—V₁—N(R³¹)₂, —O—V₁—N(R³¹)₂, —N(R³¹)—V_o—Ar¹, —N(R³¹)—V_o—Ar¹, —O—[CH₂]_p—O—, —S—[CH₂]_p—S— and —[CH₂]_q—. Preferably, R¹ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O—[CH₂]_p—O— and —[CH₂]_q—.

Ar¹ is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar¹ is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycar- 10 bonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

R³⁰ is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, 15 cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, 20 cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R³⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alky- 25 lamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R^{31} is independently R^{30} , or $-N(R^{31})_2$ is an optionally substituted non-aromatic heterocyclic group. Examples 35 of suitable substituents are as described above in the first set of values for Structural Formula (I).

R² and R³ taken together with the nitrogen atom of N(R²R³) form a 5- or 6-membered, optionally-substituted stituents for the non-aromatic heterocyclic ring represented by —NR²R³ are as described above in the first set of values for Structural Formula (I).

R⁴ is an aliphatic or aryl group each optionally substituted with one or more substituents described above in the first set 45 of values for Structural Formula (I).

R⁵ and R⁶ for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.

For Structural Formula (VIII), R⁷ is —H or C1-C6 alkyl, 50 preferably —H.

Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I)

A second set of values for the variables in Structural Formulas (II)-(VIII) is provided in the following paragraphs:

R¹ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR³⁰, 60 las (II)-(VIII) is provided in the following paragraphs: -[CH₂]₄. Preferably, R¹ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6

18

haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O— $[CH_2]_p$ —O— and -[CH₂]_a-

Ar¹ is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar1 is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

R³⁰ is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R³ independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R³¹ is independently R³⁰, or —N(R³¹)₂ is an optionally substituted non-aromatic heterocyclic group.

 $-N(R^2R^3)$ is a pyrrolidinyl, azetidinyl, piperidinyl, pipernon-aromatic heterocyclic ring. Examples of suitable sub- 40 azinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.

> R4 is an aliphatic or aryl group each optionally substituted with one or more substituents. Examples of suitable substituents are described above in the first set of values for Structural Formula (I).

> R⁵ and R⁶ for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.

> For Structural Formula (VIII), R⁷ is —H or C1-C6 alkyl, preferably —H.

> Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I).

A third set of values for the variables in Structural Formu-

R¹ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30,

 $[\mathrm{CH_2}]_{\rho}$ —S—, or — $[\mathrm{CH_2}]_{q}$ —. Preferably, R^1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O— $[\mathrm{CH_2}]_{\rho}$ —O— and — $[\mathrm{CH_2}]_{\rho}$ —.

Ar¹ is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar¹ is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

R³⁰ is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the 20 group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substitu- 25 ents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R³⁰ is independently hydrogen; a phenyl group optionally 30 substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl 35 group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R^{31} is independently R^{30} , or $-N(R^{31})_2$ is an optionally substituted non-aromatic heterocyclic group.

—N(R²R³) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of 45 halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.

R⁴ is an optionally substituted aryl or an optionally substituted lower arylalkyl group. Example of suitable substituents are as described in the first set of values for Structural Formula (I).

R⁵ and R⁶ for Structural Formulas (II), (III) and (V) are each independently —H, —OH, a halogen, a lower alkoxy 55 group or a lower alkyl group.

For Structural Formula (VIII), R⁷ is —H.

Preferably, Q in Structural Formula (II) is —O—, —S—, —C(O)—, —C(S)—, —NR⁷(CO)— or —C(O)NR⁷—

Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I). Preferably, for Structural Formula (II), Q is —O—, —S—, —C(O)—, —C(S)—, —NR⁷(CO)— or —C(O)NR⁷—.

A fourth set of values for the variables in Structural Formulas (II)-(VIII) is provided in the following paragraphs:

20

 R^1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, — OR^{30} , — SR^{30} , — $N(R^{31})_2$, Ar^1 , — V_o — OR^{30} , — V_o — $N(R^{31})_2$, — V_o — Ar^1 , — $O-V_o$

Ar¹ is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R³⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R^{31} is independently R^{30} , or $--N(R^{31})_2$ is an optionally substituted non-aromatic heterocyclic group.

—N(R²R³) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.

R⁴ is an optionally substituted aryl or an optionally substituted lower arylalkyl group. Examples of suitable substitutents for R⁴ are as provided above in the first set of values for Structural Formula (I). Preferably, R⁴ is selected from the group consisting of:

-continued

Each of rings A-Z5 is optionally and independently substituted.

For Structural Formula (VIII), R⁷ is —H.

Values and preferred values of the remainder of the variables of Structural Formulas (II)-(VIII) are each independently as described above in the first set of values for Structural Formula (I). When the compound of the invention is represented by Structural Formula (III) or (IV), or a pharmaceutically acceptable salt thereof, n is 1, 2, 3 or 4. Alternatively, when the compound of the invention is represented by Structural Formula (V) or (VI), or a pharmaceutically acceptable salt thereof, n is 3, 4 or 5.

A fifth set of values for the variables in Structural Formulas (II)-(VIII) independently is as defined in the first set, second 50 set, third set, fourth set, fifth set, sixth set or seventh set of values for the variables for Structural Formula (I).

In a third embodiment, the compound of the invention is represented by Structural Formula (IX) or (X):

$$\begin{array}{c} \text{OH} \\ \text{N}(\mathbb{R}^2\mathbb{R}^3) \\ \text{HN} \\ \text{O} \end{array} (\mathbb{C}\mathbb{H}_2)_n - \mathbb{O} \\ \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \end{array} ,$$

-continued

or a pharmaceutically acceptable salt thereof. A first set of values for the variables in Structural Formulas (IX) and (X) is defined in the following paragraphs:

 $\rm R^1$ is a phenyl group optionally substituted with one or more substituents. Examples of suitable substituents include halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, $\rm -OR^{30}, -SR^{30}, -N(R^{31})_2, Ar^1, -V_o -OR^{30}, -V_o -N (R^{31})_2, -V_o -Ar^1, -O -V_o -Ar^1, -O -V_1 -N(R^{31})_2, -S -V_o -Ar^1, -S -V_1 -N(R^{31})_2, -N(R^{31}) -V_o -Ar^1, -N(R^{31}) -V_1 -N(R^{31})_2, -O -[CH_2]_p -O -, -S -[CH_2]_p -S -, and -[CH_2]_q -; preferably, <math display="inline">\rm R^1$ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of -OH, -OCH_3, -OC_2H_5 and -O -[CH_2]_p -O -.

—N(R²R³) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, which is optionally substituted
 with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino; preferably, —N(R²R³) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group.

Phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, C1-C10 dialkylamino, —OR 50 , —Ar 3 , —V $_{4}$ —Ar 3 , —V—OR 50 , —O(C1-C10 haloalkyl), —V $_{4}$ —O (C1-C10 haloalkyl), —O—V $_{4}$ —Ar 3 , —O—[CH $_{2}$] $_{q}$ — and —[CH $_{2}$] $_{q}$ —.

Ar³ is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R⁵⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 alkylamino, C1-C6 alkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. For Structural Formula (IX), n is 1, 2, 3 or 4. For Structural Formula (X), n is 3, 4 or 5.

Values and preferred values of the remainder of the variables of Structural Formulas (IX) and (X) are each independently as defined above in the first set of values for Structural Formula (I).

A second set of values and preferred values for the variables in Structural Formulas (IX) and (X) is as defined in the following paragraphs:

 R^1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of 5 —OH, —OCH₃, —OC₂H₅ and —O—[CH₂] $_p$ —O—.
—N(R^2R^3) is pyrrolidinyl.

Phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C10 alkyl, C1-C10 haloalkyl, amino, C1-C10 alkylamino, c1-C10 dialkylamino, aryl, aryloxy, hydroxy, C1-C10 alkoxy, —O—[CH₂]_p—O— and —[CH₂]_q—. Preferably, phenyl ring A is optionally substituted with one or more substituents selected from the group consisting of —OH, —OCH₃ or —OC₂H₅.

For Structural Formula (IX), n is 1, 2, 3 or 4. For Structural Formula (X), n is 3, 4 or 5.

Values and preferred values of the remaining variables of Structural Formulas (IX) and (X) are each independently as described above in the first set of values for Structural Formula (I).

A third set of values for the variables in Structural Formulas (IX) and (X) independently is as defined in the first set, second set, third set, fourth set or fifth set, of values for Structural Formulas (II)-(VIII).

In a fourth embodiment, the compound of the invention is represented by Structural Formula (XI), (XII) or (XIII):

$$\begin{array}{c} \text{OH} \\ \text{R}^1 \\ \\ \\ \text{HN} \\ \\ \text{O} \end{array} (CR^5R^6)n - R^4, \end{array} \tag{XII}$$

OH
$$R^{1} \longrightarrow N(R^{2}R^{3})$$

$$HN \longrightarrow (CH_{2})n \longrightarrow R^{4},$$

$$QUIVE$$

$$\begin{matrix} OH \\ R^1 \end{matrix} \begin{matrix} N(R^2R^3), \\ HN \end{matrix} \begin{matrix} R^4 \end{matrix}$$

or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:

group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O— $[CH_2]_p$ —O— and — $[CH_2]_q$ —.

Ar¹ is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, Ar¹ is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

R³⁰ is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R³⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R³¹ is independently R³⁰, or —N(R³¹)₂ is an option-40 ally substituted non-aromatic heterocyclic group. Examples of suitable substituents are as described above in the first set of values for Structural Formula (I).

R² and R³ taken together with the nitrogen atom of N(R²R³) form a 5- or 6-membered, optionally-substituted
 non-aromatic heterocyclic ring. Examples of suitable substituents for the non-aromatic heterocyclic group represented by —NR²R³ are as described above in the first set of values for Structural Formula (I).

R⁴ is an optionally substituted aryl group. Examples of suitable substituents for R⁴ are as provided above in the first set of values for Structural Formula (I).

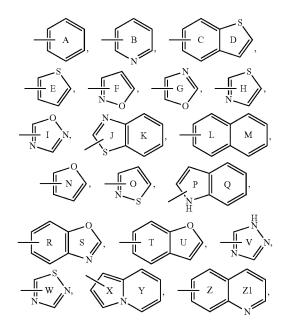
R⁵ and R⁶ for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.

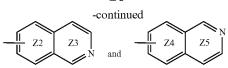
Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).

A second set of values and preferred values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:

 R^1 is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR 30 , —SR 30 , —N(R 31)₂, Ar 1 , —V $_o$ —OR 30 , —V $_o$ —N(R 31)₂, —V $_o$ —Ar 1 , —O—V $_o$ —Ar 1 , —O—V $_1$ —N(R 31)₂, —S—V $_o$ —Ar 1 , —S—V $_1$ —N(R 31)₂, —N(R 31)—V $_o$ —Ar 1 ,

group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O— $[CH_2]_p$ —O—, and — $[CH_2]_q$ —.


Ar¹ is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.


Each R³⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 $_{\rm 25}$ alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; and

Each R³¹ is independently R³⁰, or —N(R³¹)₂ is an optionally substituted non-aromatic heterocyclic group.

-N(R²R³) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, which is optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.

R⁴ is an optionally substituted aryl group. Suitable substituents and preferred substitutents are as provided above in the first set of values for Structural Formula (I). Preferably, R^{4-40} is selected from the group consisting of:

Each of rings A-Z5 is optionally and independently substituted. Preferably, each of rings A-Z5 is optionally and independently substituted with one or more substituents selected from Ar³ and Ar³—Ar³ wherein values and preferred values of Ar³ are as described above for the first set of values for Structural Formula (I). Preferably, Ar³ is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 haloalkoxy, amino, C1-C10 alkylamino and C1-C10 dialkylamino. More preferably, Ar³ is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.

R⁵ and R⁶ for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.

Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).

A third set of values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:

R¹ is a phenyl group optionally substituted with one or C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 35 more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, —OR30, gen, cyano, intro, C1-C6 arkyl, C1-C6 haloarkyl, —OK , —SR³⁰, —N(R³¹)₂, Ar¹, —V_o—OR³⁰, —V_o—N(R³¹)₂, —V_o—Ar¹, —O—V_o—Ar¹, —O—V₁—N(R³¹)₂, —S—V_o—Ar¹, —S—V₁—N(R³¹)₂, —N(R³¹)—V_o—Ar¹, —N(R³¹)—V₁—N(R³¹)₂, —O—[CH₂]_p—O—, —S—[CH₂]_p—S—, or —[CH₂]_q—. Preferably, R¹ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkylamino, C1-C6 45 dialkylamino, aryl, aryloxy, —OH, C1-C6 alkoxy, —O- $[CH_2]_p$ —O—, and — $[CH_2]_{q^2}$

 Ar^{1} is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 50 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R30 is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R³¹ is independently R³⁰, or —N(R³¹), is an option-65 ally substituted non-aromatic heterocyclic group.

N(R²R³) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group.

25

R⁴ is a biaryl group, such as a biphenyl group, optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar³, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.

R⁵ and R⁶ for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably —H.

Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).

A fourth set of values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:

 ${
m R}^1$ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of ${
m -OH, -OCH_3, -OC_2H_5}$ and ${
m -O-[CH_2]_p-O-}$, Preferably, ${
m R}^1$ is

where r is 1, 2, 3 or 4, preferably 1 or 2.

 $-N(R^2R^3)$ is an unsubstituted pyrrolidinyl group.

R⁴ is a biaryl group, such as a biphenyl group, optionally substituted with one or more substituents selected from the ³⁰ group consisting of halogen, cyano, amino, nitro, Ar^a, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.

R⁵ and R⁶ for Structural Formula (XI) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower 35 alkyl group, preferably —H.

n is an integer from 1 to 4.

Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).

A fifth set of values preferred values for the variables of Structural Formulas (XI)-(XIII) is defined in the following paragraphs:

 R^1 is a phenyl group optionally substituted with one or 45 more substituents selected from the group consisting of -OH, $-OCH_3$, $-OC_2H_5$ and $-O-[CH_2]_p$ —O-. Preferably R^1 is

where r is 1, 2, 3 or 4, preferably 1 or 2. $-N(R^2R^3)$ is pyrrolidinyl. R^4 is

optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar³, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and C1-C6 haloalkoxy.

n is 1.

R⁵ and R⁶ for Structural Formula (XI) are each independently—H,—OH, a halogen, a lower alkoxy group or a lower alkyl group, preferably—H.

Values and preferred values of the remainder of the variables of Structural Formulas (XI)-(XIII) are each independently as described above in the first set of values for Structural Formula (I).

A sixth set of values for the variables in Structural Formulas (XI)-(XIII) independently is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set of values for Structural Formula (I).

In a fifth embodiment, the compound of the invention is represented by Structural Formula (XIV) or (XV):

$$N(R^{2}R^{3})$$

$$N(R^{2}R^{3})$$

$$O \longrightarrow (CH_{2})_{k} \longrightarrow R^{8},$$

$$(XIV)$$

$$N(R^{2}R^{3})$$

$$N(R^{2}R^{3})$$

$$N(R^{2}R^{3})$$

$$N(R^{2}R^{3})$$

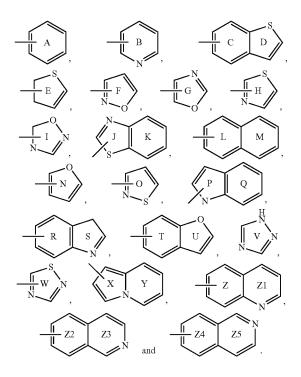
$$N(R^{2}R^{3})$$

$$N(R^{2}R^{3})$$

or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formulas (XIV) and (XV) is as defined in the following paragraphs:

 R^{Γ} is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, $-OR^{30}$, $-SR^{30}$, $-N(R^{31})_2$, Ar^1 , $-V_1$, $-OR^{30}$, $-V_2$, $-N(R^{31})_2$, $-V_3$, $-V_4$, $-V_4$, $-V_4$, $-V_5$,

 $[\mathrm{CH_2}]_p$ —O—, and — $[\mathrm{CH_2}]_q$ —. Ar¹ is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy and C1-C6 haloalkyl.


Each R³⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R^{31} is independently R^{30} , or $--N(R^{31})_2$ is an optionally substituted non-aromatic heterocyclic group.

—N(R²R³) is a pyrrolidinyl, azetidinyl, piperazinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.

k is 0, 1, 2, 3, 4, 5 or 6.

R⁸ is —H, or an optionally substituted aryl or an optionally substituted lower alkyl group. Examples of suitable substituents are as described for the first set of values for Structural Formula (I). Preferably, R⁸ is selected from the group consisting of:

Each of rings A-Z5 is optionally and independently substituted. Examples of suitable substituents for R^8 are as provided above in the first set of values for R^4 in Structural Formula (I). More preferably, R^8 is a

group. Alternatively, R^8 is an aryl group substituted with Ar^3 , such as a phenyl group substituted with Ar^3 , where values and preferred values of Ar^3 are as described above in Structural Formula (I).

Values and preferred values of the remainder of the variables of Structural Formulas (XIV) and (XV) are each independently as described above in the first set of values for Structural Formula (I).

A second set of values for the variables in Structural Formulas (XIV) and (XV) is defined in the following paragraphs: 65

R¹ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of halo-

gen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, $-OR^{30}$, $-SR^{30}$, $-N(R^{31})_2$, Ar^1 , $-V-OR^{30}$, $-V-N(R^{31})_2$, $-V-Ar^1$, $-O-V-Ar^1$, $-O-V_1-N(R^{31})_2$, $-S-V-Ar^1$, $-S-V_1-N(R^{31})_2$, $-N(R^{31})-V-Ar^1$, $-N(R^{3\prime})-V-N(R^{31})_2$, $-O-[CH_2]_p-O-$, $-S-[CH_2]_p-S-$ and $-[CH_2]_q$.

Ar¹ is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R³⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl.

Each R^{31} is independently R^{30} , or $-N(R^{31})_2$ is an optionally substituted non-aromatic heterocyclic group.

—N(R²R³) is an unsubstituted pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group, preferably an unsubstituted pyrrolidinyl group.

Values and preferred values for k and R^8 are as provided above in the first set of values for Structural Formulas (XIV) and (XV).

Values and preferred values of the remainder of the variables of Structural Formulas (XIV) and (XV) are each independently as described above in the first set of values for Structural Formula (I).

A third set of values for the variables in Structural Formulas (XIV) and (XV) is defined in the following paragraphs:

 ${
m R}^1$ is a phenyl group optionally substituted with one or more substituents selected from the group consisting of ${
m -OH, -OCH_3, -OC_2H_5}$ and ${
m -O-[CH_2]_p-O-.}$ Preferably ${
m R}^1$ is

where r is 1, 2, 3 or 4, preferably 1 or 2.

 $-N(R^2R^3)$ is pyrrolidinyl.

50

Values and preferred values for k and R⁸ are each independently as provided above in the first set of values for Structural Formulas (XIV) and (XV).

Values and preferred values of the remainder of the variables of Structural Formulas (XIV) and (XV) are each independently as described above in the first set of values for Structural Formula (I).

A fourth set of values for the variables in Structural Formulas (XIV)-(XV) is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set for Structural Formula (I).

In a sixth embodiment, the compound of the invention is represented by Structural Formula (XXI):

(XXI)

$$\mathbb{R}^{30}$$
O

 \mathbb{N}
 \mathbb{N}

or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formula (XXI) is as defined in the following paragraphs:

Each of A and B independently is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. k' is 0, 1 or 2.

k" is 0, 1 or 2. Preferably, k" is 0 or 1. More preferably k" is 1.

m' is 0, 1 or 2. Preferably, m' is 1.

Values and preferred values for the remainder of the variables of Structural Formula (XXI) are each independently as described above in the first set of values for Structural Formula (I).

A second set of values for the variables in Structural Formula (XXI) is provided in the following paragraphs:

Y is —H, —C(O)R, —C(O)OR or —C(O)NRR', preferably —H.

Values and preferred values for A, B, k', k" and m' are each independently as described above in the first set of values for Structural Formula (XXI).

Values and preferred values for the remainder of the variables of Structural Formula (XXI) are each independently as described above in the first set of values for Structural Formula (I).

A third set of values for the variables in Structural Formula (XXI) is provided in the following paragraphs:

R³⁰ is independently hydrogen; an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R³⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, 55 hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. More preferably, R³⁰ is independently hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the 65 group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy,

C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Even more preferably, R³⁰ is independently hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.

Values and preferred values for A, B, Y, k', k" and m' are each independently as described above in the second set of values for Structural Formula (XXI).

Values and preferred values for the remainder of the variables of Structural Formula (XXI) are each independently as described above in the first set of values for Structural Formula (I).

A fourth set of values for the variables in Structural Formula (XXI) is provided in the following paragraphs:

Y is —H.

Values and preferred values for R³⁰, A, B, k', k" and m' are each independently as described above in the third set of values for Structural Formula (XXI).

Values and preferred values for the remainder of the variables of Structural Formula (XXI) are each independently as described above in the first set of values for Structural Formula (I).

In a seventh embodiment, the compound of the invention is represented by Structural Formula (XXII), (XXIII), (XXIV), (XXV), (XXVI), (XXVII), (XXVIII), (XXIX), (XXX) or (XXXI):

$$(XXII)$$

$$(A)_{k'}$$

$$O$$

$$(CR_{5}R_{6})_{n}$$

$$Q$$

$$R^{4}$$

$$(XXIII)$$

$$(A)_{k'} \longrightarrow (CH_2)_n \longrightarrow (B)_{k'},$$

(XXVI)

(XXVIII)

(XXIX)

(XXX)

(XXXI)

-continued

$$\mathbb{R}^{30}$$
OH \mathbb{H}
 \mathbb{R}^{30} OH \mathbb{H}
 \mathbb{R}^{30} OH \mathbb{H}
 \mathbb{H}

$$\mathbb{R}^{30}\mathrm{O} \stackrel{\mathrm{OH}}{\longrightarrow} \mathbb{H}$$

$$R^{30}O$$

OH

NH

NH

NR⁴R⁷

$$\mathbb{R}^{30}$$
OH
 \mathbb{H}
 \mathbb{H}

$$\mathbb{R}^{30}$$
OH \mathbb{H}
 \mathbb{R}^{30} OH $\mathbb{R}^{n'}$
 \mathbb{R}^{4}

-continued

or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formulas (XXII)-(XXXI) is as defined in the following paragraphs:

Each of A and B independently is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy. Each R³⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. (XXVII) 30 Preferably, R^{30} is independently hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, 35 C1-C6 alkylcarbonyl and C1-C6 haloalkyl. More preferably, R³⁰ is independently hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.

> Each k' is independently 0, 1 or 2. Each k" is independently 0, 1 or 2. Each m' is independently 0, 1 or 2. Preferably, each m' is 1. Each n is independently 1, 2, 3, 4, 5 or 6. Preferably, each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4, and each n in Structural Formulas (XXIII) or

> (XXIV) is independently 2, 3, 4 or 5. Values and preferred values for the remainder of the variables of Structural Formulas (XXII)-(XXXI) are each independently as described above in the first set of values for Structural Formula (I).

> A second set of values for the variables in Structural Formulas (XXII)-(XXXI) is provided in the following paragraphs:

Each R⁴ in Structural Formulas (XXII)-(XXVIII) is independently an aliphatic or aryl group each optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I). Preferably, each R⁴ in Structural Formulas (XXII)-(XXVIII) is independently an optionally substituted aryl or an optionally substituted lower arylalkyl group. Examples of suitable substituents are as described in the first set of values for Structural Formula

Each R4 in Structural Formulas (XXIX)-(XXXI) is independently an aryl group optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I).

55

65

R⁵ and R⁶ in Structural Formulas (XXII), (XXIII), (XV) and (XXIX) are each independently —H, —OH, a halogen, a C1-C6 alkoxy group or a C1-C6 alkyl group.

For Structural Formula (XXVIII), R^7 is —H or C1-C6 alkyl, preferably —H.

Values and preferred values for A, B, R³⁰, k', k", m' and n are each independently as described above in the first set of values for the variables in Structural Formulas (XXII)-(XXXI). Preferably, each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4, and each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 4 or 5.

Values and preferred values for the remainder of the variables of Structural Formulas (XXII)-(XXXI) are each independently as described above in the first set of values for Structural Formula (I).

A third set of values for the variables in Structural Formulas (XXII)-(XXXI) is provided in the following paragraphs:

Each R⁴ in Structural Formulas (XXII)-(XXVIII) is independently an optionally substituted aryl or an optionally substituted lower arylalkyl group. Example of suitable substituents are as described in the first set of values for Structural Formula (I). Each R⁴ in Structural Formulas (XXIX)-(XXXI) is independently an aryl group optionally substituted with one or more substituents described above in the first set of values for Structural Formula (I).

R⁵ and R⁶ for Structural Formulas (XXII), (XXIII), (XXV) and (XXIX) are each independently —H, —OH, a halogen, a lower alkoxy group or a lower alkyl group.

For Structural Formula (XXVIII), R⁷ is —H.

Q in Structural Formula (XXII) is
$$-O$$
—, $-S$ —, $-C(O)$ —, $-C(S)$ —, $-NR^7(CO)$ — or $-C(O)NR^7$ —.

Values and preferred values for A, B, R³⁰, k', k", m' and n are each independently as described above in the first set of values for the variables in Structural Formulas (XXII)-(XXXI). Preferably, each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4, and each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 40 or 5.

Values and preferred values for the remainder of the variables of Structural Formulas (XXII)-(XXXI) are each independently as described above in the first set of values for Structural Formula (I).

A fourth set of values for the variables in Structural Formulas (XXII)-(XXXI) is provided in the following paragraphs:

Each R⁴ in Structural Formulas (XXII)-(XXVIII) is independently selected from the group consisting of:

wherein each x is independently 0 or 1, and each of rings A-Z5 is optionally and independently substituted.

Each R⁴ in Structural Formulas (XXIX)-(XXXI) is independently selected from the group consisting of:

wherein each of rings A-Z5 is optionally and independently substituted. Preferably, each R⁴ in Structural Formulas (XXII)-(XXXI) is independently monocyclic.

Example of suitable substituents for rings A-Z5 are as described in the first set of values for Structural Formula (I). 5

Preferably, in Structural Formulas (XXIX)-(XXXI), each of rings A-Z5 is optionally and independently substituted with one or more substituents selected from Ar³ and Ar³—Ar³ wherein values and preferred values of Ar³ are as described above for the first set of values for Structural Formula (I). 10 Preferably, Ar³ is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, hydroxy, C1-C10 alkoxy, nitro, cyano, C1-C10 alkoxycarbonyl, C1-C10 alkylcarbonyl, C1-C10 halo alkoxy, amino, C1-C10 15 alkylamino and C1-C10 dialkylamino. More preferably, Ar³ is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, C1-C4 20 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialky-

Values and preferred values for $R^5, R^6, R^7, R^{30}, Q, k', k'', m'$ and n are each independently as described above in the third set of values for the variables in Structural Formulas (XXII)- 25 (XXXII). Preferably, each n in Structural Formulas (XXV) and (XXVI) is independently 1, 2, 3 or 4, and each n in Structural Formulas (XXIII) or (XXIV) is independently 2, 3, 4 or 5.

Values and preferred values for the remainder of the variables of Structural Formulas (XXII)-(XXXI) are each independently as described above in the first set of values for Structural Formula (I).

A fifth set of values for the variables in Structural Formulas (XXII)-(XXXI) is provided in the following paragraphs:

Each R⁴ in Structural Formulas (XXII)-(XXVIII) is independently

$$---(\mathrm{CH}_2)_x - \prod_{l} A$$

wherein x is 0 or 1.

Each R^4 in Structural Formulas (XXIX)-(XXXI) is independently

Each ring A is optionally substituted. Example of suitable 55 substituents for rings A are as described in the first set of values for Structural Formula (I). Preferably, ring A is optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, amino, nitro, Ar³, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy, hydroxy and 60 C1-C6 haloalkoxy.

Ar³ is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C4 alkyl, C1-C4 haloalkyl, hydroxy, C1-C4 alkoxy, nitro, cyano, C1-C4 alkoxycarbonyl, C1-C4 alkylcarbonyl, 65 C1-C4 haloalkoxy, amino, C1-C4 alkylamino and C1-C4 dialkylamino.

Values and preferred values for A, B, R⁵, R⁶, R⁷, R³⁰, Q, k', k", m' and n are each independently as described above in the fourth set of values for the variables in Structural Formulas (XXII)-(XXXI).

Values and preferred values for the remainder of the variables of Structural Formulas (XXII)-(XXXI) are each independently as described above in the first set of values for Structural Formula (I).

A sixth set of values for the variables other than A, B, k', k'' and m' in Structural Formulas (XXII)-(XXXI) is as defined in the first set, second set, third set, fourth set, fifth set, sixth set or seventh set of values for the variables for Structural Formula (I), and values and preferred values for A, B, k', k'' and m' are each independently as described above in the first set of values for the variables in Structural Formulas (XXII)-(XXXI).

In an eighth embodiment, the compound of the invention is represented by Structural Formula (XXXII) or (XXXIII):

$$\mathbb{R}^{30}\mathrm{O} \xrightarrow{\mathrm{OH}} \mathbb{H} \xrightarrow{\mathbb{N}} \mathbb{H}$$

$$(XXXIII)$$

$$(A)_{k'}$$

$$O \longrightarrow NH$$

$$NH$$

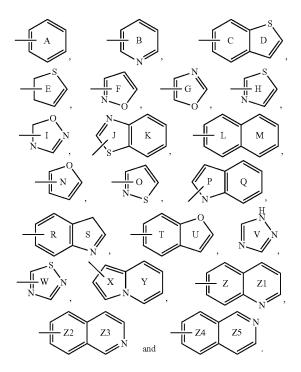
$$(CH_{2})_{i} \longrightarrow R^{8}$$

$$(XXXIII)$$

or a pharmaceutically acceptable salt thereof. A first set of values and preferred values for the variables in Structural Formulas (XXXII)-(XXXIII) is as defined in the following paragraphs:

Each of A and B independently is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 alkoxy or C1-C6 haloalkoxy.

Each R³⁰ is independently hydrogen; a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, 50 C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. Preferably, R³⁰ is independently hydrogen; or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl. More preferably, R³⁰ is independently hydrogen, or a C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkoxy, C1-C6 haloalkoxy and hydroxy.


Each k' is independently 0, 1 or 2.

Each k" is independently 0, 1 or 2.

Each m' is independently 0, 1 or 2.

Each q is independently 0, 1, 2, 3, 4, 5 or 6.

Each R⁸ independently is —H, or an optionally substituted ⁵ aryl or an optionally substituted lower alkyl group. Examples of suitable substituents are as described for the first set of values for Structural Formula (I). Preferably, each R⁸ independently is selected from the group consisting of:

Each of rings A-Z5 is optionally and independently substituted. Examples of suitable substituents for R^8 are as provided above in the first set of values for R^4 in Structural Formula (I). More preferably, each R^8 is independently a

group. Alternatively, each R^8 is independently an aryl group substituted with Ar^3 , such as a phenyl group substituted with Ar^3 , where values and preferred values of Ar^3 are as described above in Structural Formula (I).

Values and preferred values for the remainder of the variables of Structural Formulas (XXXII)-(XXXIII) are each independently as described above in the first set of values for Structural Formula (I).

In one preferred embodiment, each k' in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1. Preferably, when 60 k' is 1, each A independently is positioned at a meta position of the phenyl ring.

In another preferred embodiment, each k" in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1, more preferably 1

In yet another preferred embodiment, each m' in Structural Formulas (XXI)-(XXXIII) is independently 1.

In yet another preferred embodiment, each k' in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1; and each k" in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1, more preferably 1.

In yet another preferred embodiment, in Structural Formulas (XXI)-(XXXIII):

Each R³⁰ is independently hydrogen or a C1-C6 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C3 alkylamino, C1-C3 dialkylamino, C1-C3 alkoxy, nitro, cyano, hydroxy, C1-C3 haloalkoxy, C1-C3 alkoxycarbonyl and C1-C3 alkylcarbonyl;

each k' in Structural Formulas (XXI)-(XXXIV) is independently 0 or 1. Preferably, when k' is 1, each A independently is positioned at a meta position of the phenyl ring; and

each k" in Structural Formulas (XXI)-(XXXIV) is independently 0 or 1, preferably 1.

In yet another preferred embodiment, in Structural Formulas (XXI)-(XXXIII):

Each —OR³⁰ is independently —OH or —O—C1-C6 alkyl optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C3 C1-C3 alkoxy, hydroxy and C1-C3 haloalkoxy;

each k' in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1. Preferably, when k' is 1, each A is independently positioned at a meta position of the phenyl ring; and

each k" in Structural Formulas (XXI)-(XXXIII) is independently 0 or 1, preferably 1.

In one more preferred embodiment, the compound of the invention is represented by Structural Formula (XVIA) or ³⁵ (XVIB):

$$[A]_{p} \xrightarrow{OH} (XVIA)$$

$$[A]_{p} \xrightarrow{OH} [A]_{p} \xrightarrow{NH} [A]_{$$

$$OH \qquad (XVIB)$$

$$O \longrightarrow OH \qquad NH \qquad I$$

$$O \longrightarrow (CH_2)_n - \mathbb{R}^4$$

or a pharmaceutically acceptable salt thereof, wherein: Q is —O—, —C(O)— or —NH, specifically, —O— or —C(O)—; r and s are each independently 1, 2, 3 or 4; each n independently is 1, 2, 3, 4, 5 or 6; and R⁴ has values and preferred values provided above in the first set of values for Structural Formula (I).

In another more preferred embodiment, the compound of the invention is represented by Structural Formula (XVIC) or (XVID):

40

60

$$OH \qquad (XVIC)$$

$$O \longrightarrow H \qquad H$$

$$n(H_2C) \longrightarrow Q \longrightarrow R^4$$

$$[l_r]_{O} \xrightarrow{OH}_{NH} \underset{|CH_2\rangle_n - \mathbb{R}^4}{|NH}_{J_s}(B)_{k'},$$

or a pharmaceutically acceptable salt thereof, wherein:

Q is
$$-O$$
, $-C(O)$ — or $-NH$, specifically, $-O$ — or $-C(O)$ —;

r and s are each independently 1, 2, 3 or 4; each n independently is 1, 2, 3, 4, 5 or 6;

R⁴ has values and preferred values provided above in the first set of values for Structural Formula (I); and

B is halogen, hydroxy, C1-C6 alkyl, C1-C6 haloalkyl, 30 C1-C6 alkoxy or C1-C6 haloalkoxy. Preferably, B is halogen, hydroxy, C1-C5 alkoxy or C1-C5 haloalkoxy.

In another more preferred embodiment, the compound of the invention is represented by Structural Formula (XVII), (XVIII), (XIX) or (XIX):

$$\begin{array}{c} OH \\ OH \\ O \end{array} \\ OH \\ OH \\ (CH_2)_n - O \end{array} \\ \begin{array}{c} A \\ (XVIII) \end{array}$$

$$\bigcap_{O} \bigoplus_{HN} \bigcap_{O} \bigcap_{A} \bigcap_{A} \bigcap_{A} \bigcap_{C} \bigcap_{$$

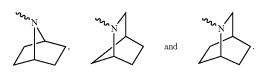
$$\begin{array}{c|c} \text{OH} & \text{XIX} \\ \hline \\ \text{O} & \text{OH} \\ \hline \\ \text{OH} \\ \hline \\$$

$$OH \longrightarrow N$$

$$ONH \longrightarrow (CH_2)_k$$

$$A \longrightarrow A$$

or a pharmaceutically acceptable salt thereof, wherein phenyl ring A is optionally substituted; each n is 1, 2, 3, 4, 5, or 6; and k is 0, 1 or 2. Values and preferred values of suitable substituents of phenyl ring A are as described above in the first set of values for Structural Formula (I).


In all of the embodiments described above for Structural Formulas (XXI)-(XXXIII) and (XVIC)-(XVID), the heterocyclic ring represented by

can be replaced with a bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 nitrogen atoms. The invention also includes compounds represented by Structural Formulas (XXI)-(XXXIII) and (XVIC)-(XVID) with this replacement of

with a bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 nitrogen atoms. Values, including preferred values, for the variables other than B, k" and m' in Structural Formulas (XXI)-(XXXIII) and (XVIC)-(XVID) are as defined above with respect to Structural Formulas (XXI)-(XXXIIII) and (XVIC)-(XVID).

Similarly, in all of the embodiments described above for Structural Formulas (I)-(XX), the non-aromatic heterocyclic ring represented by —NR²R³ can be a bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 nitrogen

Examples of bridged heterobicyclic ring comprising 5-12 ring carbon atoms and 1 or 2 nitrogen atoms include

The bridged bicyclic ring carbon atoms can be optionally substituted with one or more substituents selected from the group consisting of halogen, cyano, nitro, —OH, —SH, -S(C1-C6 alkyl),-O(C1-C6 alkyl), ---O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), C1-C6 alkyl, C1-C6 haloalkyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Alternatively, the bridged bicyclic ring carbon atoms 5 can be optionally substituted with one or more substituents selected from the group consisting of halogen, —OH, -O(C1-C6 alkyl) and —O(C1-C6 haloalkyl). The bridged bicyclic ring nitrogen atoms can be optionally substituted with one or more substituents selected from the group consisting of C1-C6 alkyl and phenyl, the alkyl being optionally substituted with halogen, cyano, nitro, —OH, —SH, -O(C1-C6 alkyl), —S(C1-C6 alkyl), —O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), phenyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino, and the phenyl being optionally substituted with halogen, cyano, nitro, —OH, -SH, -O(C1-C6 alkyl), -S(C1-C6 alkyl), -O(C1-C6 haloalkyl), —S(C1-C6 haloalkyl), C1-C6 alkyl, C1-C6 haloalkyl, amino, C1-C6 alkylamino and C1-C6 dialkylamino. Alternatively, the bridged bicyclic ring nitrogen 20 atoms can be optionally substituted with C1-C6 alkyl that is optionally substituted with halogen, —OH, —O(C1-C6 alkyl) and —O(C1-C6 haloalkyl).

In another embodiment, the compound of the invention is represented by a structural formula selected from Structural 25 Formulas (I)-(VIII) and (XI)-(XV), wherein values, including preferred values, of the variables in the structural formulas, other than R^{30} , R^{31} and R^{32} for the substituents of R^1 , are independently as defined in each embodiment described 30 above for Structural Formulas (I)-(VIII) and (XI)-(XV). In this embodiment, each R³⁰ is independently: i) hydrogen; ii) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, 35 hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or iii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, nitro, cyano, hydroxy, phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl, alkylamino, dialkylamino, alkoxy, alkoxycarbonyl and alkylcarbonyl. Each R³¹ is independently R³⁰, —CO₂R³⁰, $-SO_2R^{30}$ or $-C(O)R^{30}$; or $-N(R^{31})_2$ taken together is an optionally substituted non-aromatic heterocyclic group. Each 45 R³² is independently: i) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkylcarbonyl and haloalkoxy and haloalkyl; or ii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, nitro, cyano, hydroxy, phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl, alkylamino, dialkylamino, alkoxy, alkoxycar- 55 bonyl and alkylcarbonyl. Each of the phenyl, phenylamino, diphenylamino, aryloxy, benzoyl, phenoxycarbonyl for the substituents of the alkyl group represented by R³⁰ and R³² is independently and optionally substituted with one or more substituents selected from the group consisting of halogen, hydroxy, cyano, nitro, amino, C1-C5 alkyl, C1-C5 haloalkyl, C1-C5 alkoxy, C1-C5 haloalkoxy, C1-C5 alkylamino, C1-C5 dialkylamino, (C1-C8 alkoxy)carbonyl and (C1-C8 alkyl) carbonyl. Each of the alkylamino, dialkylamino, alkoxy, 65 alkoxycarbonyl and alkylcarbonyl for the substituents of the alkyl group represented by R³⁰ and R³² is independently and

optionally substituted with one or more substituents selected from the group consisting of halogen, hydroxy, cyano, nitro, amino, phenyl, C1-C5 alkoxy, C1-C8 haloalkoxy, phenylamino, C1-C5 alkylamino, C1-C5 dialkylamino, diphenylamino, (C1-C5 alkoxy)carbonyl, (C1-C5 alkyl)carbonyl, benzoyl and phenoxycarbonyl.

Specific examples of the compounds of the invention are shown below:

-continued

-continued

 $(H_2C)_2$

H₃CO

65

OH OH OH NO (H₂C) (
$$O$$
CH₃), (E12)

OH (H₂C) (O CH₃), (E13)

OH (O CH₂)₂-O (O CCH₃), (E15)

OH (O CH₂)₂-O (O CCF₃, (E16)

OH (O CH₂)₂-O (O CCF₃, (E16)

35

-continued

-continued

(E22)

OH
$$OH$$
 OH OCH_3 , OCH_3 , OCH_3 OCH_3

ΗŃ

$$\begin{array}{c} OH \\ \\ O \\ \\ O \\ \\ NH \\ \\ CF_3, \end{array} \tag{E24}$$

and pharmaceutically acceptable salts thereof.

Other specific examples of the compounds of the invention include compounds shown in Tables 1 and 2 and those exemplified in the examples below, stereoisomers thereof, and pharmaceutically acceptable salts thereof.

Also included are solvates, hydrates or polymorphs of the disclosed compounds herein. Thus, it is to be understood that when any compound is referred to herein by name and structure, solvates, hydrates and polymorphs thereof are included.

The compounds of the invention may contain one or more 60 chiral centers and/or double bonds and, therefore, may exist as stereoisomers, such as double-bond isomers (i.e., geometric isomers), enantiomers, or diastereomers. When compounds of the invention are depicted or named without indicating the stereochemistry, it is to be understood that both 65 stereomerically pure forms (e.g., geometrically pure, enantiomerically pure, or diastereomerically pure) and stereoisomeric mixtures are encompassed. For example, the compound represented by Structural Formula (I) below has chiral centers 1 and 2. Accordingly, the compounds of the invention depicted by Structural Formula (I) include (1R,2R), (1R,2S), (1S,2R) and (1S,2S) stereoisomers and mixtures thereof.

$$\begin{array}{c}
OY \\
R^{1} \\
\downarrow^{2} \\
N(R^{2}R^{3}).
\end{array}$$

$$\begin{array}{c}
N(R^{2}R^{3}).
\end{array}$$

As used herein, a racemic mixture means about 50% of one enantiomer and about 50% of is corresponding enantiomer relative to all chiral centers in the molecule. The invention encompasses all enantiomerically-pure, enantiomerically-enriched, diastereomerically pure, diastereomerically enriched, and racemic mixtures of the compounds of the invention.

In some preferred embodiments, the compounds of the invention are (1R,2R) stereoisomers.

Enantiomeric and diastereomeric mixtures can be resolved into their component enantiomers or stereoisomers by well known methods, such as chiral-phase gas chromatography, chiral-phase high performance liquid chromatography, crystallizing the compound as a chiral salt complex, or crystallizing the compound in a chiral solvent. Enantiomers and diastereomers can also be obtained from diastereomerically- or enantiomerically-pure intermediates, reagents, and catalysts by well known asymmetric synthetic methods.

Included in the invention are pharmaceutically acceptable 35 salts of the compounds disclosed herein. The disclosed compounds have basic amine groups and therefore can form pharmaceutically acceptable salts with pharmaceutically acceptable acid(s). Suitable pharmaceutically acceptable acid addition salts of the compounds of the invention include salts 40 of inorganic acids (such as hydrochloric acid, hydrobromic, phosphoric, metaphosphoric, nitric, and sulfuric acids) and of organic acids (such as, acetic acid, benzenesulfonic, benzoic, citric, ethanesulfonic, fumaric, gluconic, glycolic, isethionic, lactic, lactobionic, maleic, malic, methanesulfonic, succinic, 45 p-toluenesulfonic, and tartaric acids). Compounds of the invention with acidic groups such as carboxylic acids can form pharmaceutically acceptable salts with pharmaceutically acceptable base(s). Suitable pharmaceutically acceptable basic salts include ammonium salts, alkali metal salts 50 (such as sodium and potassium salts) and alkaline earth metal salts (such as magnesium and calcium salts). Compounds with a quaternary ammonium group also contain a counteranion such as chloride, bromide, iodide, acetate, perchlorate and the like. Other examples of such salts include hydrochlo- 55 rides, hydrobromides, sulfates, methanesulfonates, nitrates, maleates, acetates, citrates, fumarates, tartrates [e.g. (+)-tartrates, (-)-tartrates or mixtures thereof including racemic mixtures], succinates, benzoates and salts with amino acids such as glutamic acid.

When the stereochemistry of the disclosed compounds is named or depicted by structure, the named or depicted stereoisomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight pure relative to the other stereoisomers. When a single enantiomer is named or depicted by structure, the depicted or 65 named enantiomer is at least 60%, 70%, 80%, 90%, 99% or 99.9% by weight optically pure. Percent optical purity by

weight is the ratio of the weight of the enantiomer over the weight of the enantiomer plus the weight of its optical isomer.

As used herein, the term "hydrolyzable group" means an amide, ester, carbamate, carbonate, ureide, or phosphate analogue, respectively, that either: 1) does not destroy the biological activity of the compound and confers upon that compound advantageous properties in vivo, such as improved water solubility, improved circulating half-life in the blood (e.g., because of reduced metabolism of the prodrug), improved uptake, improved duration of action, or improved onset of action; or 2) is itself biologically inactive but is converted to a biologically active compound. Examples of hydrolyzable amides include, but are not limited to, lower alkyl amides, α-amino acid amides, alkoxyacyl amides, and alkylaminoalkylcarbonyl amides. Examples of biohydrolyzable esters include, but are not limited to, lower alkyl esters, alkoxyacyloxy esters, alkyl acylamino alkyl esters, and choline esters. Examples of biohydrolyzable carbamates include, but are not limited to, lower alkylamines, substituted ethylenediamines, aminoacids, hydroxyalkylamines, heterocyclic and heteroaromatic amines, and polyether amines.

An "aliphatic group" is non-aromatic, consists solely of carbon and hydrogen and may optionally contain one or more units of unsaturation, e.g., double and/or triple bonds. An aliphatic group may be straight chained, branched or cyclic. When straight chained or branched, an aliphatic group typically contains between about one and about twenty carbon atoms, typically between about one and about ten carbon atoms, more typically between about one and about six carbon atoms. When cyclic, an aliphatic group typically contains between about three and about ten carbon atoms, more typically between about three and about seven carbon atoms. A "substituted aliphatic group" is substituted at any one or more "substitutable carbon atom". A "substitutable carbon atom" in an aliphatic group is a carbon in an aliphatic group that is bonded to one or more hydrogen atoms. One or more hydrogen atoms can be optionally replaced with a suitable substituent group. A "haloaliphatic group" is an aliphatic group, as defined above, substituted with one or more halogen atoms. Suitable substituents on a substitutable carbon atom of an aliphatic group are the same as those for an alkyl group.

The term "alkyl" used alone or as part of a larger moiety, such as "alkoxy", "haloalkyl", "arylalkyl", "alkylamine", "cycloalkyl", "dialkyamine", "alkylamino", "dialkyamino" "alkylcarbonyl", "alkoxycarbonyl" and the like, includes as used herein means saturated straight-chain, cyclic or branched aliphatic group. As used herein, a C1-C6 alkyl group is referred to "lower alkyl." Similarly, the terms "lower alkoxy", "lower haloalkyl", "lower arylalkyl", "lower alkylamine", "lower cycloalkylalkyl", "lower dialkyamine", "lower alkylamino", "lower alkylamino" "lower alkylamino", "lower alkylamino" "lower alkylamino", "lower alkylamino" tower alkylamino" alkylamino" to six carbon atoms.

The term "alkoxy" means —O-alkyl; "hydroxyalkyl" means alkyl substituted with hydroxy; "aralkyl" means alkyl substituted with an aryl group; "alkoxyalkyl" mean alkyl substituted with an alkoxy group; "alkylamine" means amine substituted with an alkyl group; "cycloalkylalkyl" means alkyl substituted with cycloalkyl; "dialkylamine" means amine substituted with two alkyl groups; "alkylcarbonyl" means —C(O)—R*, wherein R* is alkyl; "alkoxycarbonyl" means —C(O)—OR*, wherein R* is alkyl; and where alkyl is as defined above.

The terms "amine" and "amino" are used interchangeably throughout herein and mean —NH₂, —NHR or —NR₂, wherein R is alkyl.

"Cycloalkyl" means a saturated carbocyclic ring, with from three to eight carbons.

The terms "haloalkyl" and "haloalkoxy" mean alkyl or alkoxy, as the case may be, substituted with one or more halogen atoms. The term "halogen" means F, Cl, Br or I. 5 Preferably the halogen in a haloalkyl or haloalkoxy is F.

The term "acyl group" means —C(O)R, wherein R is an optionally substituted alkyl group or aryl group (e.g., optionally substituted phenyl). R is preferably an unsubstituted alkyl group or phenyl.

An "alkylene group" is represented by -[CH₂]_zwherein z is a positive integer, preferably from one to eight, more preferably from one to four.

As used herein, the term "alkenyl" refers to a straight or branched hydrocarbon group that contains one or more 15 double bonds between carbon atoms. Suitable alkenyl groups include, e.g., n-butenyl, cyclooctenyl and the like. An alkenyl group may be substituted.

The term "aryl group" used alone or as part of a larger moiety as in "aralkyl", "aralkoxy", or "aryloxyalkyl", 20 includes carbocyclic aromatic rings and heteroaryl rings. The term "aromatic group" may be used interchangeably with the terms "aryl", "aryl ring" "aromatic ring", "aryl group" and "aromatic group". An aromatic group typically has six-fourteen ring atoms. A "substituted aryl group" is substituted at 25 any one or more substitutable ring atom.

Carbocyclic aromatic rings have only carbon ring atoms (typically six to fourteen) and include monocyclic aromatic rings such as phenyl and fused polycyclic aromatic ring systems in which two or more carbocyclic aromatic rings are 30 fused to one another. Examples include 1-naphthyl, 2-naphthyl, 1-anthracyl.

The term "heteroaryl", "heteroaromatic", "heteroaryl ring", "heteroaryl group" and "heteroaromatic group", used alone or as part of a larger moiety as in "heteroaralkyl" or 35 "heteroarylalkoxy", refers to aromatic ring groups having five to fourteen ring atoms selected from carbon and at least one (typically 1-4, more typically 1 or 2) heteroatom (e.g., oxygen, nitrogen or sulfur). They include monocyclic rings and polycyclic rings in which a monocyclic heteroaromatic 40 oxazolyl (e.g., 2-oxazolyl, 4-oxazolyl, 5-oxazolyl), pyrazolyl (e.g., 3-pyrazolyl, 4-pyrazolyl), pyrrolyl (e.g., 1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), pyridyl (e.g., 2-pyridyl, 3-pyridyl, 4-pyridyl), pyrimidinyl (e.g., 2-pyrimidinyl, 4-pyrimidinyl, 50 5-pyrimidinyl), pyridazinyl (e.g., 3-pyridazinyl), thiazolyl (e.g., 2-thiazolyl, 4-thiazolyl, 5-thiazolyl), triazolyl (e.g., 2-triazolyl, 5-triazolyl), tetrazolyl (e.g., tetrazolyl) and thienyl (e.g., 2-thienyl, 3-thienyl. Examples of monocyclic sixmembered nitrogen-containing heteroaryl groups include 55 pyrimidinyl, pyridinyl and pyridazinyl. Examples of polycyclic aromatic heteroaryl groups include carbazolyl, benzimidazolyl, benzothienyl, benzofuranyl, indolyl, quinolinyl, benzotriazolyl, benzothiazolyl, benzoxazolyl, benzimidazolyl, isoquinolinyl, indolyl, isoindolyl, acridinyl, or ben- 60 zisoxazolyl.

The term "non-aromatic heterocyclic group", used alone or as part of a larger moiety as in "non-aromatic heterocyclylalkyl group", refers to non-aromatic ring systems typically having five to twelve members, preferably five to seven, in 65 which one or more ring carbons, preferably one or two, are each replaced by a heteroatom such as N, O, or S. A non52

aromatic heterocyclic group can be monocyclic or fused bicyclic. A "nitrogen-containing non-aromatic heterocyclic group" is a non-aromatic heterocyclic group with at least one nitrogen ring atom.

Examples of non-aromatic heterocyclic groups include (tetrahydrofuranyl (e.g., 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl), [1,3]-dioxalanyl, [1,3]-dithiolanyl, [1,3]-dioxanyl, tetrahydrothienyl (e.g., 2-tetrahydrothienyl, 3-tetrahydrothieneyl), azetidinyl N-azetidinyl, 1-azetidinyl, 2-azetidinyl), oxazolidinyl (e.g., N-oxazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl), morpholinyl (e.g., N-morpholinyl, 2-morpholinyl, 3-morpholinyl), thiomorpholinyl (e.g., N-thiomorpholinyl, 2-thiomorpholinyl, 3-thiomorpholinyl), pyrrolidinyl (e.g., N-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl)piperazinyl (e.g., N-piperazinyl, 2-piperazinyl), piperidinyl (e.g., N-piperidinyl), 2-piperidinyl, 3-piperidinyl, 4-piperidinyl), thiazolidinyl (e.g., 4-thiazolidinyl), diazolonyl and N-substituted diazolonyl. The designation "IV" on N-morpholinyl, N-thiomorpholinyl, N-pyrrolidinyl, N-piperazinyl, N-piperidinyl and the like indicates that the non-aromatic heterocyclic group is attached to the remainder of the molecule at the ring nitrogen atom.

A "substitutable ring atom" in an aromatic group is a ring carbon or nitrogen atom bonded to a hydrogen atom. The hydrogen can be optionally replaced with a suitable substituent group. Thus, the term "substitutable ring atom" does not include ring nitrogen or carbon atoms which are shared when two aromatic rings are fused. In addition, "substitutable ring atom" does not include ring carbon or nitrogen atoms when the structure depicts that they are already attached to a moiety other than hydrogen.

An aryl group may contain one or more substitutable ring atoms, each bonded to a suitable substituent. Examples of suitable substituents on a substitutable ring carbon atom of an aryl group include halogen, alkyl, haloalkyl, Ar^A, —OR^A, $\begin{array}{l} -\text{O(haloalkyl)}, -\text{SR}^{A}, -\text{NO}_{2}, -\text{CN}, -\text{N}(R^{B})_{2}, -\text{NR}^{B}\text{C} \\ (\text{O)}R^{A}, -\text{NR}^{B}\text{CO}_{2}R^{C}, -\text{N}(R^{B})\text{C}(\text{O)}\text{N}(R^{B})_{2}, -\text{C}(\text{O)}R^{A}, \end{array}$ $-S(O)_2R^A$, $-SO_2N(R^B)_2$, $-CO_2R^A$, and polycyclic rings in which a monocyclic heteroaromatic 40 $-\text{CO}_2\text{R}^{-r}$, $-\text{SO}_2\text{N}(\text{R}^2)_2$, $-\text{NR}^B\text{SO}_2\text{N}(\text{R}^2)_2$, $-\text{NR}^B\text{SO$ $\begin{array}{llll} R^{C}, & -V_{A}-NR^{B}SO_{2}N(R^{B})_{2}, & -V_{A}-NR^{B}SO_{2}R^{C}, \\ -O-V_{A}-Ar^{4}, & -O-V_{B}-N(R^{B})_{2}, & -S-V_{A}-Ar^{4}, \\ -S-V_{B}-N(R^{B})_{2}, & -N(R^{B})-V_{B}-Ar^{4}, & -N(R^{B})-V_{B}-N(R^{B})_{2}, & -NR^{B}C(O)-V_{A}-N(R^{B})_{2}, & -NR^{B}C(O)-V_{A}-Ar^{4}, & -CO_{2}-V_{A}-N(R^{B})_{2}, & -CO_{2}-V_{A}-Ar^{4}, & -CO_{2}-V_{A}-N(R^{B})_{2}, & -CO_{2}-V_{A}-Ar^{4}, & -C(O)N(R^{B})-V_{B}-N(R^{B})_{2}, & -C(O)N(R^{B})-V_{A}-Ar^{4}, & -S(O)_{2}-V_{A}-N(R^{B})_{2}, & -S(O)_{2}-V_{A}-N(R^{B})_{2}, & -SO_{2}N(R^{B})-V_{B}-N(R^{B})_{2}, & -SO_{2}N(R^{B})-V_{A}-Ar^{4}, & -SO_{2}N(R^{B})-V_{B}-N(R^{B})_{2}, & -SO_{2}N(R^{B})-V_{A}-Ar^{4}, & -N(R^{B})_{2}, & -S(O)-V_{A}-N(R^{B})_{2}, & -N(R^{B})_{2}, & -N(R^{B$ or two adjacent substituents, taken together, form a methylenedioxy, ethylenedioxy or $-[CH_2]_4$ group.

Each V_{\perp} is independently a C1-C10 alkylene group. Each V_B is independently a C2-C10 alkylene group.

Ar⁴ is a monocyclic aromatic group each substituted with zero, one or two groups independently selected from halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl.

Each R^A is independently i) hydrogen; ii) an aromatic group substituted with zero, one or two groups represented by halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl; or iii) an alkyl

group optionally substituted with halogen, hydroxyl, alkoxy, nitro, cyano, alkoxycarbonyl, alkylcarbonyl or haloalkoxy.

Each R^B is independently R^A , — CO_2R^A , — SO_2R^A or — $C(O)R^A$; or — $N(R^B)_2$ taken together is an optionally substituted non-aromatic heterocyclic group.

Each R^C is independently: i) an aromatic group substituted with zero, one or two groups represented by halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy or haloalkyl; or ii) an alkyl group optionally substituted with halogen, hydroxyl, alkoxy, nitro, cyano, 10 alkoxycarbonyl, alkylcarbonyl or haloalkoxy.

An alkyl or a non-aromatic heterocyclic group (including, but not limited to, non-aromatic heterocyclic groups represented by $-N(R^{31})_2$, $-N(R^{41})_2$, $-N(R^{51})_2$ and $-N(R^B)_2$) may contain one or more substituents. Examples of suitable 15 substituents for an alkyl or a ring carbon of a non-aromatic heterocyclic group include those listed above for a substitutable carbon of an aryl and the following: =O, =S, =NNHR^C, =NN(R^C)₂, =NNHC(O)R^C, =NNHCO₂ (alkyl), =NNHSO₂ (alkyl), =NR^C, spiro cycloalkyl group, 20 fused cycloalkyl group or a monocyclic non-aromatic nitrogen-containing heterocyclic group attached by a ring nitrogen atom (e.g., N-piperidinyl, N-pyrrolidinyl, N-azepanyl, N-morpholinyl, N-thiomorphinyl, N-piperazinyl or N-diazepanyl group). Each R^C is independently selected from 25 hydrogen, an unsubstituted alkyl group or a substituted alkyl group. Examples of substituents on the alkyl group represented by R^C include amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylamialkylaminocarbonyloxy, 30 dialkylaminocarbonyloxy, alkoxy, nitro, cyano, carboxy, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl. Preferred substituents for an alkyl or a ring carbon of a non-aromatic heterocyclic group include C1-C2 alkyl, —OH, N-pyrrolidinyl, N-piperidinyl, N-(4-alkyl)piperazi- 35 nyl, N-morpholinyl or N-pyrrolyl.

Suitable substituents on the nitrogen of a non-aromatic heterocyclic group or heteroaryl group include $-\mathbb{R}^D$, $-N(R^D)_2$, $-C(O)R^D$, $-CO_2R^D$, $-C(O)C(O)R^D$, -C(O) $CH_{2}C(O)R^{D}, -SO_{2}R^{D}, -SO_{2}N(R^{D})_{2}, -C(=S)N(R^{D})_{2}, 40$ $-C(=NH)-N(R^D)_2$, and $-NR^DSO_2R^D$; wherein R^D is hydrogen, an alkyl group, a substituted alkyl group, phenyl (Ph), substituted Ph, —O(Ph), substituted —OPh), CH₂(Ph), substituted CH₂(Ph), or an unsubstituted heteroaryl or heterocyclic ring. Examples of substituents on the alkyl group or 45 the phenyl ring represented by R^D include amino, alkylamino, dialkylamino, aminocarbonyl, halogen, alkyl, alkylaminocarbonyl, dialkylaminocarbonyloxy, alkoxy, nitro, cyano, alkoxycarbonyl, alkylcarbonyl, hydroxy, haloalkoxy, or haloalkyl. Preferred substituents on a substi- 50 tutable nitrogen atom of a nitrogen-containing heteroaryl or nitrogen-containing non-aromatic heterocyclic group include C1-C2 alkyl, C1-C2 hydroxyalkyl, or benzyl optionally substituted with halogen, nitro, cyano, C1-C2 alkyl, C1-C2 haloalkyl, C1-C2 alkoxy or C1-C2 haloalkoxy.

In some specific embodiments, non-aromatic heterocyclic groups (including, but not limited to, non-aromatic heterocyclic groups represented by $-N(R^{31})_2$, $-N(R^{41})_2$, $-N(R^{51})_2$ and $-N(R^B)_2$) each independently are optionally substituted with one or more substituents selected from the group consisting of halogen, -O, -S, -N(C1-C6 alkyl), C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl) amino. In some more specific embodiments, the non-aromatic heterocyclic groups each independently are optionally substituted with one or more substituents selected from the

54

group consisting of halogen, C1-C6 alkyl, C1-C6 haloalkyl, hydroxy, C1-C6 alkoxy, nitro, cyano, (C1-C6 alkoxy)carbonyl, (C1-C6 alkyl)carbonyl, C1-C6 haloalkoxy, amino, (C1-C6 alkyl)amino and (C1-C6 dialkyl)amino.

Inhibitors of glucosylceramide synthase can be used to treat diabetes, such as type 2 diabetes (see WO 2006/053043, the entire teachings of which are incorporated herein by reference). As such, the disclosed compounds, which are inhibitors of glucosylceramide synthase, can be used to treat diabetes, e.g., type 2 diabetes and renal hypertrophy or hyperplasia associated with diabetic nephropathy, by administration of a therapeutically effective amount of a compound of the invention to a subject in need of such treatment.

Inhibitors of glucosylceramide synthase, such as GM3 synthase, have been shown to be useful for treating lysosomal storage diseases (see, for example, U.S. Pat. Nos. 6,569,889; 6,255,336; 5,916,911; 5,302,609; 6,660,749; 6,610,703; 5,472,969; 5,525,616, the entire teachings of which are incorporated herein by reference). As such, the disclosed compounds, which are inhibitors of glucosylceramide synthase, can be used to treat lysosomal storage diseases, such as Tay-Sachs, Gaucher's or Fabry's disease, by administration of a therapeutically effective amount of a compound of the invention to a subject in need of such treatment.

In an alternative embodiment of the present invention, the compounds of the present invention can be used for: treating disorders involving cell growth and division, including cancer, collagen vascular diseases, atherosclerosis, and the renal hypertrophy of diabetic patients (see U.S. Pat. Nos. 6,916,802 and 5,849,326, the entire teachings of which are incorporated herein by reference); inhibiting the growth of arterial epithelial cells (see U.S. Pat. Nos. 6,916,802 and 5,849,326); treating patients suffering from infections (see Svensson, M. et al., "Epithelial Glucosphingolipid Expression as a Determinant of Bacterial Adherence and Cytokine Production," Infect. and *Immun.*, 62:4404-4410 (1994), the entire teachings of which are incorporated herein by reference); preventing the host, i.e., patient, from generating antibodies against the tumor (see Inokuchi, J. et al., "Antitumor Activity in Mice of an Inhibitor of Glycosphingolipid Biosynthesis," Cancer Lett., 38:23-30 (1987), the entire teachings of which are incorporated herein by reference); and treating tumors (see Hakomori, S. "New Directions in Cancer Therapy Based on Aberrant Expression of Glycosphingolipids: Anti-adhesion and Ortho-Signaling Therapy," Cancer Cells 3:461-470 (1991), Inokuchi, J. et al., "Inhibition of Experimental Metastasis of Murine Lewis Long Carcinoma by an Inhibitor of Glucosylceramide Synthase and its Possible Mechanism of Action," Cancer Res., 50:6731-6737 (1990) and Ziche, M. et al., "Angiogenesis Can Be Stimulated or Repressed in In Vivo by a Change in GM3: GD3 Ganglioside Ratio," Lab. Invest., 67:711-715 (1992), the entire teachings of which are incorporated herein by refer-

In an alternative embodiment, the compounds of the invention can be used for a vaccine-like preparation (see, for
example, U.S. Pat. Nos. 6,569,889; 6,255,336; 5,916,911;
5,302,609; 6,660,749; 6,610,703; 5,472,969; 5,525,616).
Here, cancer cells are removed from the patient (preferably as
completely as possible), and the cells are grown in culture in
order to obtain a large number of the cancer cells. The cells are
then exposed to the inhibitor for a time sufficient to deplete
the cells of their GSLs (generally 1 to 5 days) and are reinjected into the patient. These reinjected cells act like antigens
and are destroyed by the patient's immunodefense system.
The remaining cancer cells (which could not be physically
removed) will also be attacked by the patient's immunodefense system. In a preferred embodiment, the patient's circu-

lating gangliosides in the plasma are removed by-plasmapheresis, since the circulating gangliosides would tend to block the immunodefense system.

In an alternative embodiment of the present invention, the compounds of the present invention can be used for treating a subject having polycystic kidney disease (PKD). As shown in Example 4, Applicants have discovered that a certain glucosylceramide synthase inhibitors can reduce the growth of cyst formation and/or growth in an animal modeled PKD (see for example, U.S. Provisional Application No. 60/997,803, filed 10 Oct. 5, 2007, the entire teachings of which are incorporated herein by reference).

As used herein a subject is a mammal, preferably a human, but can also be an animal in need of veterinary treatment, such as a companion animal (e.g., dogs, cats, and the like), a farm 15 animal (e.g., cows, sheep, pigs, horses, and the like) or a laboratory animal (e.g., rats, mice, guinea pigs, and the like). Subject and patient are used interchangeably. A subject "in need of treatment" includes a subject with chronic renal failure

"Treatment" or "treating" refers to both therapeutic and prophylactic treatment.

An "effective amount" of a pharmaceutical composition disclosed above is a quantity that results in a beneficial clinical outcome of or exerts an influence on, the condition being 25 treated with the pharmaceutical composition compared with the absence of treatment. The administering amount of a pharmaceutical composition disclosed above to the subject will depend on the degree, severity, and type of the disease or condition, the amount of therapy desired, and the release 30 characteristics of the pharmaceutical composition. It will also depend on the subject's health, size, weight, age, sex, and tolerance to drugs. An effective amount of an active agent is an amount sufficient to have the desired effect for the condition being treated, which can either be treatment of an active 35 disease state or prophylactically inhibiting the active disease state from appearing or progressing. For example, an effective amount of a compound for treating a polycystic kidney disease is the quantity of compound that results in a slowing in the progression of the polycystic kidney disease, a reversal 40 of the polycystic kidney disease state, the reduction of new cyst formation (partial or complete inhibition of cystogenesis), a reduction in cyst mass, a reduction in the size and number of cysts, and/or a reduction in the severity of the symptoms associated with the polycystic kidney disease 45 (PDK).

Typically, the pharmaceutical compositions of the invention are administered for a sufficient period of time to achieve the desired therapeutic effect. Dosages may range from 0.1 to 500 mg/kg body weight per day. In one embodiment, the 50 dosing range is 1-20 mg/kg/day. The compound of the invention may be administered continuously or at specific timed intervals. For example, the compound of the invention may be administered 1, 2, 3, or 4 times per day, such as, e.g., a daily or twice-daily formulation. Commercially available assays 55 may be employed to determine optimal dose ranges and/or schedules for administration. For example, assays for measuring blood glucose levels are commercially available (e.g., OneTouch® Ultra®, Lifescan, Inc. Milpitas, Calif.). Kits to measure human insulin levels are also commercially avail- 60 able (Linco Research, Inc. St. Charles, Mo.). Additionally, effective doses may be extrapolated from dose-response curves obtained from animal models (see, e.g., Comuzzie et al., Obes. Res. 11 (1):75 (2003); Rubino et al., Ann. Surg. 240(2):389 (2004); Gill-Randall et al., Diabet. Med. 21 (7): 65 759 (2004), the entire teachings of which are incorporated herein by reference). Therapeutically effective dosages

56

achieved in one animal model can be converted for use in another animal, including humans, using conversion factors known in the art (see, e.g., Freireich et al., Cancer Chemother. Reports 50(4):219 (1996), the entire teachings of which are incorporated herein by reference) and Table A below for equivalent surface area dosage factors.

)	From:	Mouse (20 g)	Rat (150 g)	Monkey (3.5 kg)	Dog (8 kg)	Human (60 kg)
	To: Mouse	1	1/2	1/4	1/6	1/12
	To: Rat	2	1	1/2	1/4	1/7
	To: Monkey	4	2	1	3/5	1/3
	To: Dog	6	4	3/5	1	1/2
5	To: Human	12	7	3	2	1

Typically, the pharmaceutical compositions of the invention can be administered before or after a meal, or with a meal. As used herein, "before" or "after" a meal is typically within two hours, preferably within one hour, more preferably within thirty minutes, most preferably within ten minutes of commencing or finishing a meal, respectively.

In one embodiment, the method of the present invention is a mono-therapy where the pharmaceutical compositions of the invention are administered alone. Accordingly, in this embodiment, the compound of the invention is the only pharmaceutically active ingredient in the pharmaceutical compositions.

In another embodiment, the method of the invention is a co-therapy with other therapeutically active drugs known in the art for treating the desired diseases or indications, such as one or more known drugs for treating, diabetes, lysosomal diseases, tumors, etc.

In a particular embodiment, the method of the invention is a combination therapy for treating diabetes, such as Type 2 diabetes. The combination therapy comprise any of the compounds of the invention described herein and at least one other compound suitable for treating diabetes. Examples of drugs or compounds used to treat type 2 diabetes include: insulin (e.g., Novolin®, Novolog®, Velosulin®); sulfonylureas (e.g., Diabinese®, Glucotrol®, Glucotrol XL®, (Diabeta®, Amaryl®, Orinase®, Tolinase®, Micronase® and Glynase®); metformin; [alpha]-glucosidase inhibitors (e.g., Glyset®); thiazolidinediones (e.g., Actos® and Avandia®); nateglinide (Starlix®); repaglinide (Prandin®) and combination drugs such as Avandamet® (Avandia® and metformin).

In another embodiment, the method of the invention is a combination therapy for treating polycystic kidney disease (PDK). Any of the compounds of the invention described herein are co-administered either simultaneously as a single dosage form or consecutively as separate dosage forms with other agents that ease the symptoms and/or complications associated with PKD. The associated symptoms with PKD include pain, headaches, urinary tract infections and high blood pressure. Examples of the agents that can be co-administered with the compounds of the invention include, but are not limited to, over-the counter pain medications, antibiotics, antimicrobials, thiazide diuretics, angiotensin-converting enzyme inhibitors, angiotensin II antagonists such as losartan, and calcium channel blockers such as diltiazem. Examples of pain medications include acetaminophen, aspirin, naproxen, ibuprofen and COX-2 selective inhibitors such as rofecoxib, celecoxib and valdecoxib. Examples of antibiotics and antimicrobials include cephalosporins, penicilin derivatives, aminoglycosidesm ciprofloxacin, erythromycin, chloramphemicol, tetracycline, ampicillin, gentamicin, sulfamethoxazole, trimethoprim and ciprofloxacin, streptomy-

cin, rifamycin, amphotericin B, griseofulvin, cephalothin, cefazolin, fluconazole, clindamycin, erythromycin, bacitracin, vancomycin and fusidic acid Examples of thiazide diuretics include bendroflumethiazide, chlorothiazide, chlorothialidone, hydrochlorothiazide, hydroflumethiazide, methyclothiazide, metolazone, polythiazide, quinethazone and trichlormethiazide. Examples of angiotensin-converting enzyme inhibitors include benazepril, captopril, cilazapril, enalapril, enalaprilat, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril and trandolapril.

The pharmaceutical compositions of the invention optionally include one or more pharmaceutically acceptable carriers and/or diluents therefor, such as lactose, starch, cellulose and dextrose. Other excipients, such as flavoring agents; sweeteners; and preservatives, such as methyl, ethyl, propyl and butyl parabens, can also be included. More complete listings of suitable excipients can be found in the Handbook of Pharmaceutical Excipients (5th Ed., Pharmaceutical Press (2005)).

The carriers, diluents and/or excipients are "acceptable" in the sense of being compatible with the other ingredients of the pharmaceutical composition and not deleterious to the recipient thereof. The pharmaceutical compositions can conveniently be presented in unit dosage form and can be prepared by any suitable method known to the skilled artisan. In general, the pharmaceutical compositions are prepared by uniformly and intimately bringing into association the compounds disclosed herein with the carriers, diluents and/or excipients and then, if necessary, dividing the product into unit dosages thereof.

The pharmaceutical compositions of the invention can be formulated as a tablet, sachet, slurry, food formulation, troche, capsule, elixir, suspension, syrup, wafer, chewing gum or lozenge. A syrup formulation will generally consist of a suspension or solution of the compounds of the invention 35 described herein or salt in a liquid carrier, for example, ethanol, glycerine or water, with a flavoring or coloring agent. Where the composition is in the form of a tablet, one or more pharmaceutical carriers routinely used for preparing solid formulations can be employed. Examples of such carriers 40 include magnesium stearate, starch, lactose and sucrose. Where the composition is in the form of a capsule, the use of routine encapsulation is generally suitable, for example, using the aforementioned carriers in a hard gelatin capsule shell. Where the composition is in the form of a soft gelatin 45 shell capsule, pharmaceutical carriers routinely used for preparing dispersions or suspensions can be considered, for example, aqueous gums, celluloses, silicates or oils, and are incorporated in a soft gelatin capsule shell.

Though the above description is directed toward routes of 50 oral administration of pharmaceutical compositions consistent with embodiments of the invention, it is understood by those skilled in the art that other modes of administration using vehicles or carriers conventionally employed and which are inert with respect to the compounds of the invention 55 may be utilized for preparing and administering the pharmaceutical compositions. For example, the pharmaceutical compositions of the invention may also be formulated for rectal administration as a suppository or retention enema, e.g., containing conventional suppository bases such as cocoa butter 60 or other glycerides. Also, the pharmaceutical compositions of the invention can be formulated for injection, or for transdermal or transmucosal administration. Illustrative of various modes of administration methods, vehicles and carriers are those described, for example, in Remington's Pharmaceutical 65 Sciences, 18th ed. (1990), the disclosure of which is incorporated herein by reference.

58

The invention is illustrated by the following examples which are not intended to be limiting in any way.

EXEMPLIFICATION

Example 1

General Methods for the Preparation of Compounds of the Invention

A general method for the synthesis of final compounds is depicted in Scheme 1. A general method for the preparation of the compounds of the invention involves the reaction of the amine of type EVII with the appropriate reagent. The amine type EVII, such as (1R,2R)-2-amino-(2,3-dihydrobenzo[β] [1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl) propan-1-ol, can be prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference), or by using the general synthetic procedures depicted in schemes 2-5. Final amide compounds, EIX can be prepared by reaction of the amine EVII with the corresponding acylating agent using standard reaction conditions for the formation of an amide. The urea compounds, EIIX can be prepared by reaction of the amine EVII with the corresponding isocyanate. The carbamates, EX can be prepared by reaction of the amine EVII with the corresponding chloroformate.

Scheme 1

Example 1A

Synthesis of the Compounds of the Invention: General Methods for the Preparation of Amide Analogs

Method 1

A mixture of Compound EVII (1 mmol), such as (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using

59

the methods depicted in schemes 2, 3, 4 and 5, an acid (1.2 mmol), DCC (dicyclohexylcarbodiimide, 1.2 mmol) and HOBT (1-hydroxy benzotriazole, 1.2 mmol) was dissolved in CH₂Cl₂ (5 ml). The mixture was stirred at room temperature and monitored by TLC (thin liquid chromatography) for 5 completion. After completion the mixture was filtered and purified by column chromatography using, for example, a mixture of (CH₂Cl₂/MeOH/NH₄OH). Method 2

A mixture of Compound EVII (1 mmol), such as (1R,2R)- 10 2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, an acid and 15 DCC (dicyclohexylcarbodiimide, 1.2 mmol) was dissolved in CHCl₃ (5 ml). The mixture was placed in the microwave reactor (T=120° C., time=1 min) and it was then filtered and purified by column chromatography using, for example, a mixture of (CH₂Cl₂/MeOH/NH₄OH). Method 3

A mixture of Compound EVII (1 mmol), such as (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-3-(pyrrolidin-1-yl)propan-1-ol, prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, an acid chloride (1.2 mmol) and K₂CO₃ (2 mmol) was suspended in THF (5 ml). The mixture was stirred at room temperature and monitored by TLC for completion. After completion, the 30 mixture was filtered and purified by column chromatography using, for example, a mixture of (CH₂Cl₂/MeOH/NH₄OH). Method 4

Compound EVII, such as (1R,2R)-2-amino-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-3-pyrrolidin-1-yl-propan-1-ol, prepared according to the preparation of intermediate 4 of 60

U.S. Pat. No. 6,855,830 (the entire teachings of which are incorporated herein by reference) or using the methods depicted in schemes 2, 3, 4 and 5, was coupled with a variety of N-hydroxysuccinamide esters in methylene chloride under an atmosphere of nitrogen, for example, for 18 to 24 hours depending on the ester used.

Preparation of N-Hydroxysuccinamide Esters

Various mono- and di-keto acids were coupled with N-hydroxysuccinamide in the presence of N,N¹-dicyclohexylcarbodiimide in ethyl acetate under an atmosphere of nitrogen for 18 hours. The products were filtered to remove the dicyclohexylurea. The identity of these esters was confirmed by ¹H NMR and the crude material was then used in the preparation of amide analogs without further purification.

Example 1B

Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 1

An alternative general synthesis of Compound EVII is depicted in Scheme 2. Treatment of (R)-2-(benzyloxycarbonylamino)-3-hydroxypropanoic acid with EDCI and N,Odimethylhydroxyamine gave the weinreb amide EI in excellent yield. The primary alcohol was protected as the TBDMS ether EII in excellent yield by reaction with TBDMSCl in DMF. Reaction of EII with a grignard at low temperature gave EIII in good to excellent yields. Steroselective reduction of EIII and with L-selectride at -70 C gave EIV in good to excellent yield and selectivity. Compound EV was obtained in good to excellent yields after deprotection with acetic acid. Reaction with mesylate chloride and a suitable amine produced EVI in good to excellent yield. Finally, deprotection to the primary amine EVII was done in the microwave oven using NaOH aqueous solution in methanol at 150° C. for one to three minutes depending on the specific compound.

Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 2

An alternative general synthesis of Compound EVII is depicted in Scheme 3. Intermediate AI was obtained with excellent diastereoselectivity (96:4) by reduction of compound A with LiAlH $_4$ followed by reaction with an aldehyde in the presence of CuI and Me $_2$ S. Mesylate intermediate AIII 15 was obtained by reaction with Amberlyst 15 followed by reaction with MsCl in pyridine. The final compound EVII was obtained by reaction with pyrrolidine and removal of the CBz by hydrogenation.

02

$$\begin{array}{c|c} & H_2O/\\ EtOH \\ \hline \\ R_2 \\ \hline \\ N_{1} \\ \hline \\ R_3 \\ \hline \\ N_{1} \\ EVII \\ \end{array}$$

LiOH/

45

Example 1B

Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 3

A general alternative route for synthesis of compound EVII is depicted in Scheme 4. Intermediate EIV was obtain as shown in Scheme 4 was cycled into oxazolidinone B using sodium hydride in a DMF/THF solution. Deprotection of the primary alcohol by reaction with nBu₄NF, followed by formation of the tosylate by reaction with tosyl chloride in pyridine, finally, displacement of the tosylate by an appropriate amine afforded compound B1 in good to excellent yield. Hydrolysis of the oxazolidinone with LiOH in a water ethanol mixture gave compound EVII.

Example 1B

Alternative Synthetic Method for the Preparation of Intermediate EVII. Synthetic Route 4

An alternative general synthesis of Compound EVII is depicted in Scheme 5. An aldehyde (2 equiv) is condensed with the chiral morpholinone in toluene with removal of water to provide the fused cycloadduct 2. Treatment of 2 with hydrogen chloride in an alcohol solvent such as methanol provides amino acid 3. Removal of the N-benzyl functionality can be accomplished with hydrogen in the presence of a palladium catalyst to afford 4. Cyclization of 4 with triphosgene and base provides ester 5. The ester functionality can be reduced with sodium borohydride, and the resulting alcohol converted to an appropriate leaving group (i.e. tosylate or iodide). Reaction of 6 with a suitable amine in the presence of excess base (e.g. K₂CO₃) in a polar solvent (e.g. DMSO or CH₃CN) affords 7. Final deprotection under basic conditions affords Compound EVII analogs suitable for conversion to the desired amide final products.

50

Example 1C

Preparation of Compound EVII Using Scheme 2

Preparation of EII: (R)-benzyl 3,8,8,9,9-pentamethyl-4-oxo-2,7-dioxa-3-aza-8-siladecan-5-ylcar-bamate

Imidazole (1.8 g, 26.5 mmol) was added to a solution of (R)-benzyl 3-hydroxy-1-(methoxy(methyl)amino)-1-oxo-propan-2-ylcarbamate (3 g, 10.6 mmol) in DMF (dimethyl 55 formamide, 15 mL) followed by TBDMSiCl (tert-butyldimethylsilyl chloride, 2.4 g, 15.95 mmol). The reaction stirred for 12 hrs at room temperature under nitrogen atmosphere and was quenched with aqueous ammonium chloride (100 ml). The aqueous layer was extracted with methylene chloride (200 mL) and ethyl acetate (100 mL) and the organic layers were washed with brine and concentrated. The crude product was purified by column chromatography using 10% EtOAc (ethylacetate)-hexanes to give an oil (3 g, 74% yield). 1 H NMR (400 MHz, CDCl₃) δ =O (s, 6H), 0.9 (s, 9H), 3.2 (s, 65 3H), 3.8 (s, 3H), 3.8-3.9 (m, 2H), 4.8 (broad s, 1H), 5.1 (q, 2H), 5.7 (d, 1H), 7.2-7.4 (m, 5H).

Preparation of EIII: (R)-benzyl 3-(tert-butyldimethylsilyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-oxopropan-2-ylcarbamate

 $(2,3-dihydrobenzo[\beta][1,4]dioxin-6-yl)$ magnesium mide (26 g, 78 mmol) dissolved in 40 mL of THF (tetrahydrofuran) under a nitrogen atmosphere was cooled down to -70° C. and (R)-benzyl 3,8,8,9,9-pentamethyl-4-oxo-2,7-dioxa-3-aza-8-siladecan-5-ylcarbamate (12.3 g, 31 mmol) dissolved in THF (13 ml) were added dropwise. The reaction mixture was allowed to warm up to -15° C. and left to react for 12 hrs followed by stirring at room temperature for 2 hrs. After cooling the reaction mixture to -40° C. it was quenched using aqueous ammonium chloride and the aqueous layer was extracted with EtOAc dried over magnesium sulfate and concentrated. The crude product was purified by column chromatography using 25% EtOAc-hexanes to give pure product (13 g, 88% yield). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta = 0 \text{ (d, 6H)},$ 0.9 (s, 9H), 4.0-4.2 (m, 2H), 4.4 (s, 2H), 4.5 (s, 2H), 5.2 (s, 2H), 5.4 (m, 1H), 6.1 (d, 1H), 7 (d, 1H), 7.4-7.7 (m, 7H).

30

65

Preparation of EIV: benzyl (1R,2R)-3-(tert-butyldimethylsilyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6yl)-1-hydroxypropan-2-ylcarbamate

(R)-benzyl 3-(tert-butyldimethyl silyloxy)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-oxopropan-2-ylcarbamate (3.1 g, 6.6 mmol) were dissolved in THF (25 ml) and cooled down to -70° C. under nitrogen atmosphere. L Selectride (13.2 ml of 1M solution in THF, 13 mmol) was added dropwise while keeping the temperature at -70° C. After 1 hour, the reaction was quenched with a 1M aqueous solution of potassium tartrate (13 ml) and extracted with EtOAc. The organic layer was evaporated down and the product was purified by column chromatography using 2.5% EtOAc-2% acetone-methylene chloride. The desired diastereomer was obtained in 80% yield (2.5 g). $^{1}\mathrm{H}$ NMR (400 MHz, CDCl33) 20 $\delta \!\!=\!\! 0\,(d,6H), 0.9\,(s,9H), 3.5\,(broad\,s,1H), 3.7\text{-}3.9\,(m,2H), 4.2$ (s, 4H), 4.9 (broad s, 1H), 5.0 (d, 2H), 5.4 (d, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.4 (m, 5H).

Preparation of EV: benzyl (1R,2R)-1-(2,3-dihy $drobenzo[\beta][1,4]dioxin-6-yl)-1,3-dihydroxypropan-$ 2-ylcarbamate

Benzyl (1R,2R)-3-(tert-butyldimethylsilyloxy)-1-(2,3-di-35 hydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxypropan-2-ylcarbamate (0.5 g) was dissolved in a 4 ml mixture of Acetic acid/THF/water (3/1/1) and left to stir over night. The crude was evaporated down and the product azeotropically dried 40 4H), 2.2-2.6 (m, 6H), 3.2 (m, 1H), 4.2 (s, 4H), 4.5 (s, 1H), with EtOAc (10 ml). The crude product was purified by column chromatography using 50% EtOAc-hexane. The pure product was obtained in 74% yield (0.28 g). ¹H NMR (400 MHz, CDCl₃) δ=3.4-3.8 (m, 4H), 4.1 (broad s, 4H), 4.8 (s, 45) 1H), 4.9 (broad s, 2H), 5.7 (broad s, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.4 (m, 5H).

General Procedure for Preparation of EVI and EVII

(1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6yl)-1,3-dihydroxypropan-2-ylcarbamate was dissolved in excess pyridine, cooled to -15° C. and one equivalent of methanosulfonyl chloride was added to the mixture. Mixture was stirred about half an hour, and ten equivalents of the up to room temperature and then heated at 50° C. overnight. The crude was evaporated down and the product was purified by column chromatography using a mixture of methanol/ methylene chloride/ammonium hydroxide. The pure compound EVI was then de-protected by hydrolysis in the microwave, using aqueous NaOH (40% in weight)/methanol solution as solvent and heating the mixture to 150° C. for about 15 minutes to give the free amines of the type EVI. The final product was purified by silica-gel column chromatogra- 65 phy using a mixture of methanol/methylene chloride/ammonium hydroxide.

66

Examples of EVII Compounds

i) (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4] dioxin-6-yl)-3-morpholinopropan-1-ol

$$\bigcap_{O} \bigvee_{N \in \mathbb{N}} \bigcap_{N \in \mathbb{N$$

¹H NMR (400 MHz, CDCl₃) δ =2.3 (dd, 2H), 2.4 (dd, 2H), 2.5-2.6 (m, 2H), 3.2 (m, 1H), 3.6-3.7 (m, 4H), 4.2 (s, 4H), 4.4 (d, 1H), 6.5-6.9 (m, 3H); MS for $C_{15}H_{22}N_2O_4$ m/z 294.8 [M+H].

ii) (1R,2R)-2-amino-1-(2,3-dihydrobenzo[β][1,4] dioxin-6-yl)-3-(piperidin-1-yl)propan-1-ol

¹H NMR (400 MHz, CDCl₃) δ =1.4 (broad s, 2H), 1.7 (m, 6.7-6.9 (m, 3H).

Example 1D

Preparation of Substituted Phenoxy Propionic Acids

Example 1D1

Preparation of 3-(4-methoxyphenoxy)propionic acid

i) 3-(4-methoxyphenoxy)propionitrile

A 740 g (5.96 mol, 1 eq.) sample of 4-methoxyphenol was amine were added. The reaction mixture was allowed to warm 55 charged to a 3 necked 5 L flask under nitrogen. Triton B (50 mL of a 30% wt. solution in methanol) was charged to the flask, and stirring initiated via an overhead stirrer. Acrylonitrile (2365 mL, 35.76 mol, 6 eq.) was then charged to the reaction flask in a single portion, and the reaction mixture heated at 78° C. for 36 h. HPLC analysis indicated that the reaction was complete at this point. Solvents were removed via rotary evaporation, and the resulting oil was chased with toluene to remove excess acrylonitrile. The crude material was recrystallized from TBME (tert-butyl methyl ether) 10 volumes relative to the crude weight), and dried in a vacuum oven to give 945 g of 3-(4-methoxyphenoxy)propionitrile as

white crystals (Yield: 89.48%). ¹H NMR (450 MHz, CDCl₃): δ =2.72 (t, 2H; CH₂CN); δ =3.83 (s, 3H; OCH₃); δ =4.05 (t, 2H; OCH₂); δ =6.70 (m, 4H; Ar—H); ¹³C NMR (112.5 MHz, $CDCl_3$): $\delta=18.843$ (CH_2CN); 55.902 (OCH_3); 63.699 (OCH₂); 114.947 (CH₃OCCH); 116.183 (CH₂OCCH); ⁵ 117.716 (CN); 151.983 (CH₃OC); 154.775 (CH₂OC).

ii) 3-(4-methoxyphenoxy)propionic acid

A 945 g (5.34 mol, 1 eq.) sample of 1 (3-(4-methoxyphenoxy)propionitrile was charged to a 22 L round bottom flask equipped with an overhead stirrer under N2. To the stirred solids, 4 L of concentrated HCl was slowly added, followed 15 by 2 L of H₂O. The reaction mixture was heated to 100° C. for 3.5 h, at which point the reaction was complete by HPLC analysis. The reaction was cooled to 10° C. by the addition of ice to the reaction mixture, and was filtered. The dried solids gave 920 g of crude 3-(4-methoxyphenoxy)propionic acid. The crude material was dissolved in 5 L of 6 wt. % sodium carbonate (such that pH=9), and 2 L of DCM (dichloromethane) was added to the reaction vessel. After stirring thoroughly, the organic layer was separated and discarded via 25 a separatory funnel, and the aqueous layer charged back into the 22 L flask. The pH of the aqueous layer was carefully adjusted to 4.0, by slow addition of 6 M HCl. The precipitated solids were filtered, and dried in a vacuum oven to give 900 g of 3-(4-methoxyphenoxy)propionic acid as a white solid (Yield: 86.04%). 1 H NMR (450 MHz, CDCl₃); δ =2.78 (t, 2H; CH₂COOH); 3.70 (s, 3H; OCH₃); 4.18 (t, 2H; OCH₂); 6.78 (m, 4H; Ar—H); 13 C NMR (112.5 MHz, CDCl₃): δ =34.703 (CH₃OCCH); 115.984 (CH₂OCCH); 152.723 (CH₃OC); 154.302 (CH₂OC); 177.386 (COOH).

Example 1D2

Preparation of 3-(4-(3-oxobutyl)phenoxy)propanoic acid

Step 1: a mixture of 4-(p-hydroxyphenol)-2-butanone (1.032 g), triton B (400 µL), acrylonitrile (4 mL) and MeOH (0.8 mL) was heated at 70° C. for 20 hours. The mixture was cooled to room temperature and the solvent was removed to 3-(4-(3-oxobutyl)phenoxy)propanenitrile dryness. obtained as a white solid (0.572 g) after purification by column chromatography using ethyl acetate/hexane.

Step 2: 3-(4-(3-oxobutyl)phenoxy)propanenitrile (0.478 g) was suspended in HCl (37%, 5 mL) and placed in the microwave reactor (T=110° C., 5 min). The mixture was poured onto iced water (20 g), filtered, and the solid was washed with 65 water (2×5 mL). After column chromatography purification using a mixture of methylene chloride/methanol, 3-(4-(3-

oxobutyl)phenoxy)propanoic acid was obtained as a white solid (0.3 g). ¹H NMR (CDCl₃, 400 mHz, ppm); 2.2 (s, 3H), 2.7 (t, 2H), 2.85 (m, 4H), 4.25 (t, 2H), 6.8 (d, 2H), 7.1 (d, 2H).

Example 1D3

Preparation of 3-(4-(2-methoxyethyl)phenoxy)propanoic acid

Step 1: a mixture of 4-(2-methoxy ethyl)phenol (1.547 g, 10.3 mmol), propiolic acid tert-butyl ester (1.367 g, 10.8 mmol) and N-methyl morpholine (1.18 mL, 10.8 mmol) in CH₂Cl₂ (15 mL) was stirred at room temperature for 24 hours. The mixture was absorbed on SiO₂ (20 g) and purified by column chromatography using a mixture of methylene chloride/hexane. The product was obtained as a two to one mixture of (E)/(Z)-tert-butyl 3-(4-(2-methoxyethyl)phenoxy)acrylate isomers (2.0 g).

Step 2: (E)/(Z)-tert-butyl 3-(4-(2-methoxyethyl)phenoxy)(CH₂COOH); 55.925 (OCH₃); 64.088 (OCH₂); 114.855 35 acrylate (0.57 g) was suspended in a mixture of THF (5 mL)/HCl (2 M, 5 mL) and placed in the microwave reactor (T=100° C., 15 sec). THF was removed by rotary evaporation and the mixture was extracted with CH₂Cl₂ (10 mL). (E)/(Z)-3-(4-(2-methoxyethyl)phenoxy)acrylic acid was obtained as a white solid after purification by column chromatography using a mixture of hexane/ethyl acetate.

> Step 3: (E)/(Z)-3-(4-(2-methoxyethyl)phenoxy)acrylicacid (0.3 g) was dissolved in EtOH (10 mL) and Pd/C (5%, 45 degussa type E101, 40 mg) was added. The mixture was hydrogenated at atmospheric pressure for 2 hours and then filtered and the solvent removed to dryness. After purification by column chromatography using a mixture of hexane/ethyl acetate, 3-(4-(2-methoxyethyl)phenoxy)propanoic acid was ⁵⁰ obtained as a white solid (0.236 g). ¹H NMR (CDCl₃, 400 mHz, ppm); 2.85 (t, 4H), 3.35 (s, 3H), 3.55 (t, 2H), 4.25 (t, 2H), 6.85 (d, 2H), 7.1 (d, 2H).

Example 1D4

Preparation of 3-(4-(3-methylbutanoyl)phenoxy)propanoic acid

Step 1: 3-phenoxypropionic acid (5.0 g, 30 mmol) was dissolved in MeOH (12 mL) and H₂SO₄ (18 M, 3 drops) was added. The mixture was place in the microwave reactor (T: 140° C., t: 5 min). The solvent was evaporated, the mixture was partitioned in EtOAc (30 mL) and NaOH (2N, 20 mL).

30

The organic phase was dried over MgSO₄, filtered, and evaporated to give methyl 3-phenoxypropanoate (5.0 g, 27.7 mmol, 92.5%).

Step 2: aluminum chloride (1.1 g, 8.34 mmol) was added to 5 a cold solution (0° C.) solution of methyl 3-phenoxypropanoate (1.0 g, 5.56 mmol) and tert-butylacetyl chloride (1.25 mL, 8.34 mmol) in CH₂Cl₂ (9 mL) and the reaction mixture was stirred overnight. The mixture was evaporated and the residue was diluted with EtOAc (30 mL) and then washed with water (2×20 mL) The organic phase was removed and purified with silica chromatography using of a gradient hexanes/EtOAc (100:0→0:100) to give methyl 3-phenoxypropanoate (600 mg, 2.27 mmol, 40%).

Step 3: a solution of methyl 3-phenoxypropanoate (200 mg, 0.76 mmol) in 2 mL of HCl (37%) was placed in a microwave reactor (T: 120° C., t: 5 min). The mixture was poured into iced water (2 g) and washed with EtOH (3×10 20 mL). The organic phase was combined and evaporated. The crude product was purified with silica gel chromatography using of a gradient hexanes/EtOAc (100:0→0:100) to give 3-(4-(3-methylbutanoyl)phenoxy)propanoic acid (120 mg, 0.48 mmol, 63%).

Example 2

Preparation of Compounds of the Invention

The exemplary compounds shown in Example 2 and Tables 1-3 can be prepared by following scheme 1 described above, Detailed synthetic description of certain compounds also are described below as examples.

Example 2E1

Preparation of Hemi-Hydrate of Compound 163 N-[2-Hydroxy-2-(2,3-dihydrobenzo[β][1,4]dioxin-6yl)-1-pyrrolidin-1-ylmethyl-ethyl]-3-(4-methoxyphenoxy)-propionamide

-continued
1)
O
N-OH,
$$CH_2Cl_2$$
N=C=N
OH
 CO_2H
OH

Compound 163 was prepared by following Scheme 1A above. 3-(4-methoxyphenoxy)propanoic acid (see Example 1D1, 34.47 g, 169 mmol, 96% purity by HPLC), DCC (34.78 35 g, 169 mmol) and N-hydroxysuccinimide (19.33, 169 mmol) were combined as dry powders and methylene chloride (500 mL) was added. The suspension was mechanically stirred overnight, ambient temperature, under a nitrogen atmosphere. HPLC analysis showed complete conversion of the acid to the NHS ester (N-hydroxy succinyl ester). To the mixture was added (1R,2R)-2-amino-1-(2,3-dihydro-benzo [1,4]dioxin-6-yl)-3-pyrrolidin-1-yl-propan-1-ol (50 g, 169 mmol) and stirring continued for 2.5 hours. HPLC showed 45 conversion to the product and loss of both the NHS ester and step 5 amine. The reaction mixture was vacuum filtered on a Büchner funnel to remove DCC urea. The solid urea was washed with 500 mL of methylene chloride. The organic layers were combined, placed in a separatory funnel, and treated with 500 mL of 1.0M NaOH. The layers were separated, and the cloudy organic layer was recharged into a separatory funnel and treated with a 6% HCl solution (adjusted to pH=0.03-0.34, 100 mL of solution). Two clear layers 55 formed. The resultant biphasic solution was poured into an Erlenmeyer flask and cautiously neutralized to a pH of 7.2-7.4 with a saturated solution of sodium bicarbonate (approx 200 mL of solution). The organic layer was separated from the aqueous layer, dried over sodium sulfate and evaporated to yield 83.6 g of yellow oil (theoretical yield: 77.03 g). The oil was dissolved in isopropyl alcohol (500 mL) with heating and transferred to a 1 L round bottom flask equipped with a mechanical stirrer and heating mantel. The solution was 65 heated to 50° C. and the mechanical stirrer was set to a rate of 53-64 rpm. Tartaric acid (25.33 g, 168 mmol) was dissolved in deionized water (50 mL) and added to the stirred solution

35

at 50° C. Once the solution turned from milky white to clear, seed crystals were added to the mixture and crystallization immediately began (temperature jumped to 56° C.). After 20 minutes, the mixture was set to cool to a temperature of 35° C. (cooling took 1.15 hours). Heating was removed and the solution was allowed to stir for 12 hours. The resulting thick slurry was filtered on a Büchner funnel. Any remaining solid in the flask was washed onto the funnel using ice-cold isopropyl alcohol (100 mL). The material was transferred to a drying tray and heated to 48° C. under vacuum for 3 days (after two days the material weighed 76 g and after three days it weighed 69.3 g). The solid was analyzed by LC and shown to be 98.1% pure (AUC), the residual solvent analysis showed the material to possess 3472 ppm of isopropyl alcohol, and the DSC (differential scanning calorimetery) showed a melting point of 134.89° C. A total of 69.3 g of white solid was collected (65.7% overall yield). ¹H NMR (400 MHz, CDCl₃) $\delta = 1.8 \, (M, 4H), 2.4 - 2.6 \, (m, 4H), 2.6 \, (m, 1H), 2.85 \, (m, 2H), 3.0$ (m, 1H), 3.65 (s, 3H), 3.8 (m, 2H), 3.86 (2, 2H), 4.18 (br s, 20 5H), 4.6 (s, 1H), 6.6-6.8 (m, 7H), 7.8 (d, 1H); MS for $C_{29}H_{40}N_2O_{13}$ m/z 457.3 [M+H] for main peak (free-base).

Example 2E2

Preparation of Compound 247: N-((1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-3-(p-tolyloxy)propanamide

Compound 247 was prepared by reaction of (1R,2R)-2-amino-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-1-ol as the amine, prepared according to scheme 3 with 3-(4-methylphenoxy)propionic acid using method 1.

Preparation of A: (R)-benzyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate

N,O-dimethylhydroxylamine hydrochloride (45 g, 0.46 55 mmol, 1.5 eq) and N-methyl morpholine (84 mL, 0.765 mol, 2.5 eq.) were added slowly to a cold (–15° C.) suspension of d-CBz serine (73.0 g, 0.305 mol) in CH $_2$ Cl $_2$ (560 mL) keeping the temperature below –5° C. The mixture was cooled back to ~–15° C. and EDCI (62 g, 0.323 mol, 1.05 eq) was added. The mixture was stirred for 5 hours keeping the temperature below 5° C. The solvent was removed by rotary evaporation and the mixture was partitioned between HCl (1 M, 300 mL) and EtOAc (500 mL). The organic layer was separated and washed with HCl (1 M, 2×100 mL) and then 65 sat. NaHCO $_3$ (2×150 mL). The mixture was dried over MgSO $_4$, filtered and then the solvent was removed by rotary

evaporation. (R)-benzyl 3-hydroxy-1-(methoxy(methyl) amino)-1-oxopropan-2-ylcarbamate was re-dissolved in a mixture of acetone (375 mL) and 2,2-dimethoxy propane (375 mL) and boron trifluoride ethereate (3 mL) was added. The mixture was stirred at room temperature for 5 hours and then triethyl amine (3 mL) was added. The solvent was removed to dryness and (R)-benzyl 4-(methoxy(methyl)carbamoyl)-2,2-dimethyloxazolidine-3-carboxylate was obtained as a white solid (73.0 g, 74% yield from both steps) after purification by column chromatography using a mixture of hexane/EtOAc/acetone.

¹H NMR (CDCl₃, 400 mHz, ppm); 1.5 (s, 2H), 1.6 (s, 3H), 1.7 (s, 2H), 1.75 (s, 3H), 3.14 (s, 3H), 3.24 (2H), 3.4 (3H), 3.76 (s, 2H), 4.0 (m, 1.7H), 4.16 (m, 1H), 4.2 (m, 1.7), 4.78 (m, 1H), 4.88 (m, 0.6H), 5.06 (q, 2H), 5.18 (q, 1H), 7.4 (m, 8H).

Preparation of AI: (R)-benzyl 4-((R)-hydroxy(4-methoxyphenyl)methyl)-2,2-dimethyloxazolidine-3-carboxylate

A solution of LiALH₄ (1 M, 20 mL, 20 mmol) was added dropwise to a cold (–15° C.) solution of (R)-benzyl 4-(methoxy(methyl)carbamoyl)-2,2-dimethyloxazolidine-3-carboxylate (12.2 g, 37.9 mmol) in THF (75 mL). The mixture was stirred for 30 min keeping the temperature below 0° C. A saturated solution of KHSO₄ (100 mL) was added slowly to the mixture and it was warmed to room temperature. The mixture was filtered and the solvent was removed to dryness. (R)-benzyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate was obtained as a clear oil (9.161 g, 92% yield) after purification by column chromatography (SiO₂, using a mixture of hexane/EtOAc).

¹H NMR (CDCl₃, 400 mHz, ppm); 1.7 (m, 6H), 4.15 (m, 2H), 4.4 (m, 1H), 5.15, (s, 1H), 5.2 (m, 1H), 7.3 (m, 5H), 9.6 (m, 1H).

1,2-dibromoethane (0.2 mL) was added slowly to a hot (65° C.) solution of magnesium turnings (0.91 g, 37 mmol) in THF (14 mL), followed by the dropwise addition of a solution of 4-bromo anisole (4 mL, 32 mmol) in THF (14 mL). The mixture was refluxed for 2 hours and then cooled to room temperature. The grignard solution was added dropwise to a suspension of CuI (6.8 g, 36 mmol) in a mixture of Me₂S (20 mL)/THF (100 mL) at -78° C. The mixture was warmed slowly to -45° C. and stirred for 30 min keeping the temperature between -45 to -35° C. The mixture was cooled back to -78° C., and a solution of the Garner's aldehyde [(R)-benzyl 4-formyl-2,2-dimethyloxazolidine-3-carboxylate](3.20 12.6 mmol) in THF (15 mL) was added dropwise. The mixture was stirred at low temperature overnight (15 h, T max=10° C.). The reaction mixture was quenched with NH₄Cl (sat. 100 mL) and extracted with EtOAc (50 mL). The solvent was removed to dryness and the mixture was purified

by column chromatography (SiO_2 , using a mixture of hexane/ EtOAc/acetone) and the product was obtained as a colorless oil (1.697 g, 36% yield).

Preparation of AII: benzyl (1R,2R)-1,3-dihydroxy-1-(4-methoxyphenyl)propan-2-ylcarbamate

A mixture of benzyl 4-(hydroxy-(4-methoxyphenyl)methyl)-2,2-dimethyloxazolidine-3-carboxylate (1.679 g, 4.5 mmol) and amberlyst 15 (1.85 g) in MeOH (20 mL) was stirred at room temperature for 2 days. The mixture was centrifuged and the solid was washed with MeOH (2×40 mL). The solvent was removed to dryness and after purification by column chromatography (SiO $_2$ using a mixture of CH $_2$ Cl $_2$ /EtOAc) the product was obtained as a white solid (1.26 g, 84% yield).

Preparation of AIV: Synthesis of Compound 289: benzyl (1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-ylcarbamate

Mesityl chloride ($0.28\,\mathrm{mL}$, $3.6\,\mathrm{mmol}$) was added slowly to $\,^{65}$ a cold (-10° C.) solution of benzyl (1R,2R)-1,3-dihydroxy-1-(4-methoxyphenyl)propan-2-ylcarbamate ($1.07\,\mathrm{g}$, $3.23\,\mathrm{mmol}$)

mmol) in pyridine (1.5 mL). The mixture was stirred for 30 min and then pyrrolidine (2.7 mL, 33 mmol) was added slowly to the mixture. The mixture was heated to 45° C. for 6 hours and then the solvent was removed to dryness. After purification by column chromatography (SiO $_2$, using a mixture of CH $_2$ Cl $_2$, MeOH, NH $_4$ OH), the product was obtained as a clear oil (0.816 g, 66% yield).

Preparation of EVII:

(1R,2R)-2-amino-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-1-ol as the amine was prepared by the procedures described below

A mixture of benzyl (1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-ylcarbamate (0.10 g, 0.26 mmol) and Pd/C (5%, 21 mg) in EtOH (1 mL)/HCl (1 M, 50 μ L) was degassed and hydrogen gas was added. The mixture was hydrogenated at atmospheric pressure for two hours. The mixture was filtered over celite and the solvent was removed to dryness. The product was obtained as a colorless oil (63.5 mg, 85% yield).

Preparation of Compound 247: N-((1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-3-(p-tolyloxy)propanamide

¹H NMR (CDCl₃, 400 mHz, ppm); 1.75 (br, 4H), 2.3 (s, 3H), 2.65 (br, 6H), 2.85 (m, 2H), 3.75 (s, 3H), 4.1 (m, 2H),

10

15

20

25

30

40

45

50

55

60

4.25 (m, 1H), 5.05 (sd, 1H), 6.5 (br, 1H), 6.8 (m, 4H), 7.1 (d, 2H), 7.2 (d, 2H). M/Z for $C_{24}H_{32}N_2O_4$ [M–H]⁻=413.

(br, 1H), 6.85 (s, 2H), 6.95 (s, 1H), 7.4 (m, 2H), 7.7 (s, 1H), 7.85 (m, 2H). M/Z for $C_{24}H_{26}N_2O_4S$ [M–H][–]=439.

Example 2E3

Preparation of Compound 251: N-((1R,2R)-1-hydroxy-1-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethyl)phenyl)acetamide

Preparation of Compound 11: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(phenylthio)acetamide

¹H NMR (CDCl₃, 400 mHz, ppm); 1.75 (br, 4H), 2.55 (br, 4H), 2.85 (m, 2H), 3.5 (s, 2H), 3.8 (s, 3H), 4.2 (m, 1H), 5.05 (sd, 1H), 5.8 (d, 1H), 6.8 (d, 2H), 7.1 (d, 2H), 7.2 (d, 2H), 7.55 (d, 2H). M/Z for $C_{23}H_{27}F_3N_2O_3$ [M–H]⁻⁼437.

¹H NMR (CDCl₃, 400 mHz, ppm); 1.7 (br, 4H), 2.5 (br, 4H), 2.8 (br, 2H), 3.6 (q, 2H), 4.1.5 (m, 1H), 4.2 (s, 4H), 5.9 35 (sd, 1H), 6.7 (m, 2H), 6.8 (s, 1H), 7.2 (m, 7H). M/Z for $C_{23}H_{28}N_2O_4S [M-H]^-=429.$

Example 2E4

Preparation of Compound 5: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)benzo[b]thiophene-2-carboxamide

Example 2E6

Preparation of Compound 12: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)biphenyl-4-carboxamide

¹H NMR (CDCl₃, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 4H), 3.0 (m, 2H), 4.25 (s, 4H), 4.45 (m, 1H), 5.05 (sd, 1H), 6.6

¹H NMR (CDCl₃, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 4H), 3.0 (m, 2H), 4.25 (s, 4H), 4.4 (br, 1H), 5.05 (sd, 1H), 6.6

10

15

20

25

30

40

45

(sd, 1H), 6.85 (m, 2H), 6.95 (s, 1H), 7.45 (m, 3H), 7.6 (m, 4H), 7.75 (m, 2H). M/Z for $\rm C_{28}H_{30}N_2O_4~[M-H]^-=459.$

(br, 1H), 6.6 (m, 1H), 6.75 (m, 2H), 7.2 (sd, 2H), 7.4 (m, 1H), 7.5 (st, 2H), 7.6 (m, 4H). M/Z for $\rm C_{29}H_{32}N_2O_4$ [M–H] = 473.

Example 2E7

Example 2E9

Preparation of Compound 19: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)benzo[b]thiophene-5-car-boxamide

Preparation of Compound 24: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-phenoxyphenyl)acetamide

 $^{1}\mathrm{H}$ NMR (d₆-dmso, 400 mHz, ppm); 1.6 (br, 4H), 2.4 (br, 5H), 2.65 (m, 1H), 4.15 (s, 4H), 4.25 (m, 1H), 4.75 (sd, 1H), 5.6 (br, 1H), 6.7 (m, 3H), 7.5 (sd, 1H), 7.7 (sd, 1H), 7.8 (sd, $_{35}$ 1H), 7.85 (sd, 1H), 8.0 (sd, 1H), 8.2 (s, 1H). M/Z for $\mathrm{C_{24}H_{26}N_{2}O_{4}S}$ [M–H]=439.

 $^{1}\mathrm{H}$ NMR (CDCl₃, 400 mHz, ppm); 1.8 (br, 4H), 2.6 (br, 4H), 2.8 (sd, 2H), 3.45 (s, 2H), 4.15 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.9 (br, 1H), 6.6 (m, 1H), 6.7 (s, 1H), 6.8 (m, 1H), 7.15 (m, 7H), 7.4 (m, 2H). M/Z for C₂₉H₃₂N₂O₅ [M–H] = 489.

Example 2E8

Example 2E10

Preparation of Compound 23: 2-(biphenyl-4-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide

Preparation of Compound 25: (S)—N-((1R,2R)-1-(2, 3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-hydroxy-3-phenyl-propanamide

¹H NMR (CDCl₃, 400 mHz, ppm); 1.7 (br, 4H), 2.5 (br, 4H), 2.8 (d, 2H), 3.55 (s, 2H), 4.2 (m, 5H), 4.85 (sd, 1H), 5.95

10

15

40

45

50

55

60

 ^{1}H NMR (CDCl₃, 400 mHz, ppm); 1.8 (br, 4H), 2.65 (br, 7H), 3.1 (dd, 2H), 4.2 (m, 6H), 4.8 (sd, 1H), 6.6 (m, 1H), 6.8 (m, 3H), 7.3 (m, 5H). M/Z for C₂₄H₃₀N₂O₅ [M–H]⁻=427.

(s, 2H), 6.9 (s, 1H), 7.35 (m, 1H), 7.45 (t, 2H), 7.6 (t, 1H) 8.2 (d, 2H). M/Z for $\rm C_{23}H_{26}N_2O_5\,[M\text{-H}]^-\text{=}411.$

Example 2E11

Example 2E13

Preparation of Compound 27: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-phenoxypropanamide

Preparation of Compound 32: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(phenylthio)propanamide

 $^{1}\rm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 6H), 2.9 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.45 (m, 1H), 6.75 (s, 1H), 6.85 (m, 3H), 6.95 (t, 1H), 7.2 (m, 3H). M/Z for $\rm{C}_{24}\rm{H}30N_{2}O_{5}$ [M–H] = 427.

 $^{1}\rm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm); 1.8 (br, 4H), 2.4 (t, 2H), 2.7 (br, 4H), 2.8 (m, 2H), 3.1 (m, 2H), 4.2 (m, 5H), 4.9 (sd, 1H), 5.95 (br, 1H), 6.8 (m, 3H), 7.2 (m, 1H), 7.3 (m, 3H). M/Z for C $_{24}\rm{H}_{30}\rm{N}_{2}\rm{O}_{4}\rm{S}$ [M–H] $^{-}$ =443.

Example 2E12

Example 2E14

Preparation of Compound 31: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-oxo-2-phenylacetamide

Preparation of Compound 35: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-o-tolylacetamide

¹H NMR (CDCl₃, 400 mHz, ppm); 1.8 (br, 4H), 2.8 (br, 4H), 3.0 (m, 2H), 4.2 (s, 4H), 4.3 (m, 1H), 5.05 (sd, 1H), 6.8

¹H NMR (CDCl₃, 400 mHz, ppm); 1.7 (br, 4H), 2.1 (s, 3H), 2.5 (br, 4H), 2.75 (m, 2H), 3.5 (s, 2H), 4.1 (m, 1H), 4.25 (s,

10

15

20

25

30

40

45

50

55

60

4H), 4.8 (sd, 1H), 5.75 (br, 1H), 6.5 (d, 1H), 6.65 (s, 1H), 6.75 (d, 1H), 7.1 (d, 1H), 7.2 (m, 3H). M/Z for $\rm C_{24}H_{30}N_2O_4$ [M–H]==411.

(m, 5H), 5.05 (sd, 1H), 6.85 (s, 2H), 6.9 (s, 1H), 7.1 (sd, 2H), 7.3 (m, 3H). M/Z for $\rm C_{24}H_{30}N_2O_4S~[M-H]^=\!443.$

Example 2E15

Preparation of Compound 36: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-m-tolylacetamide

 $^{1}\mathrm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm); 1.7 (br, 4H), 2.35 (s, 3H), 2.5 (br, 4H), 2.75 (m, 2H), 3.45 (s, 2H), 4.1 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.8 (br, 1H), 6.55 (d, 1H), 6.75 (m, 2H), $_{35}$ 6.9 (d, 2H), 7.1 (sd, 1H), 7.2 (m, 1H). M/Z for $\mathrm{C}_{24}\mathrm{H}_{30}\mathrm{N}_{2}\mathrm{O}_{4}$ [M–H]⁻⁼⁴¹¹.

Example 2E16

Preparation of Compound 39: 2-(benzylthio)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide

¹H NMR (CDCl₃, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 4H), 2.9 (m, 2H), 3.0 (m, 2H), 3.3 (d, 1H), 3.55 (d, 1H), 4.2

Example 2E17

Preparation of Compound 47: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(pyridin-3-yl)phenyl) acetamide

 $^{1}\mathrm{H}$ NMR (CDCl₃, 400 mHz, ppm); 1.7 (br, 4H), 2.6 (br, 4H), 2.8 (sd, 2H), 3.55 (s, 2H), 4.15 (m, 1H), 4.2 (s, 4H), 4.85 (sd, 1H), 5.85 (br, 1H), 6.6 (d, 1H), 6.75 (m, 2H), 7.25 (d, 3H), 7.4 (m, 1H), 7.6 (sd, 2H), 7.9 (sd, 1H), 8.6 (sd, 1H), 8.85 (s, 1H). M/Z for C₂₈H₃₁N₃O₄ [M-H]^=474.

Example 2E18

Preparation of Compound 48: 2-(4'-chlorobiphenyl-4-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3)-pyrrolidin-1-yl)propan-2-yl)acetamide

¹H NMR (CDCl₃, 400 mHz, ppm); 1.75 (br, 4H), 2.55 (br, 4H), 2.8 (sd, 2H), 3.55 (s, 2H), 4.15 (m, 1H), 4.2 (s, 4H), 4.85

(sd, 1H), 5.8 (br, 1H), 6.6 (d, 1H), 6.75 (m, 2H), 7.2 (d, 2H), 7.4 (m, 2H), 7.55 (sd, 4H). M/Z for $\rm C_{29}H_{31}ClN_2O_4=508$.

(sd, 1H), 5.8 (br, 1H), 6.6 (d, 1H), 6.75 (m, 1H), 6.8 (d, 1H), 6.85 (d, 1H), 6.9 (d, 1H), 7.0 (t, 1H), 7.3 (sq, 1H). M/Z for $\rm C_{23}H_{27}FN_2O_4\,[M-H]^=\!415.$

Example 2E19

5

10

40

45

50

55

60

Preparation of Compound 51: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3-(trifluoromethyl)phenyl)acetamide

Example 2E21

Preparation of Compound 54: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(3-methoxyphenoxy) propanamide

 $^{1}\rm{H}$ NMR (CDCl₃, 400 mHz, ppm); 1.7 (br, 4H), 2.55 (br, 4H), 2.8 (sd, 2H), 3.55 (s, 2H), 4.15 (m, 1H), 4.25 (s, 4H), 4.85 (sd, 1H), 5.8 (br, 1H), 6.6 (d, 1H), 6.75 (m, 2H), 7.35 (d, 1H), 7.45 (m, 2H), 7.55 (sd, 1H). M/Z for C₂₄H₂₇F₃N2O₄ [M–H]^=465.

 ^{1}H NMR (CDCl $_{3}$, 400 mHz, ppm); 1.7 (br, 4H), 2.65 (br, 35 6H), 2.85 (m, 2H), 3.80 (s, 3H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.45 (m, 4H), 6.75 (s, 2H), 6.85 (s, 1H), 7.2 (t, 1H). M/Z for $C_{25}H_{32}N_{2}O_{6}\left[M-H\right]^{-}=457.$

Example 2E20

Example 2E22

Preparation of Compound 53: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3-fluorophenyl)acetamide

Preparation of Compound 55: 3-(2,5-dichlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3(pyrrolidin-1-yl)propan-2-yl) propanamide

¹H NMR (CDCl₃, 400 mHz, ppm); 1.7 (br, 4H), 2.55 (br, 4H), 2.8 (sd, 2H), 3.50 (s, 2H), 4.15 (m, 1H), 4.25 (s, 4H), 4.85

¹H NMR (CDCl₃, 400 mHz, ppm); 1.8 (br, 4H), 2.65 (br, 6H), 2.8 (m, 2H), 4.1 (m, 1H), 4.25 (m, 6H), 4.95 (sd, 1H), 6.3

10

15

20

25

30

40

45

(br, 1H), 6.75 (s, 2H), 6.8 (s, 1H), 6.9 (m, 2H), 7.25 (m, 1H). M/Z for $\rm C_{24}H_{28}Cl_2N_2O_5~[M-H]^-=496.$

 $^{1}\rm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.8 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.4 (br, 1H), 6.8 (m, 5H), 7.0 (m, 2H). M/Z for C $_{24}\rm{H}_{29}\rm{FN}_{2}\rm{O}_{5}$ [M–H] $^{-}$ =445.

Example 2E23

Example 2E25

Preparation of Compound 57: 3-(4-chlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)propanamide

Preparation of Compound 59: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(p-tolyloxy)propanamide

 $^{1}\rm{H}$ NMR (CDCl₃, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.8 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.3 (br, 1H), 6.8 $_{35}$ (m, 5H), 7.2 (m, 2H). M/Z for C₂₄H₂₉ClN₂O₅ [M–H]⁻=461.

 ^{1}H NMR (CDCl₃, 400 mHz, ppm); 1.75 (br, 4H), 2.3 (s, 3H), 2.65 (br, 6H), 2.8 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.45 (br, 1H), 6.75 (m, 4H), 6.85 (s, 1H), 7.1 (m, 2H). M/Z for $C_{25}H_{32}N_{2}O_{5}$ [M–] =441.

Example 2E24

Example 2E26

Preparation of Compound 58: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)-propan-2-yl)-3-(4-fluorophenoxy)propanamide

Preparation of Compound 60: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-pyrrolidin-1-yl)propan-2-yl)-3-(2-fluorophenoxy)propanamide

10

15

20

25

30

40

45

50

55

60

87

 $^{1}\rm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.75 (m, 2H), 4.2 (m, 7H), 4.95 (sd, 1H), 6.35 (br, 1H), 6.7 (s, 2H), 6.85 (s, 1H), 6.95 (m, 2H), 7.05 (m, 2H). M/Z for $\rm{C_{24}H_{29}FN_{2}O_{5}\,[M-H]^{-445}}.$

Example 2E27

Preparation of Compound 61: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy) propanamide

 $^{1}\rm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm); 1.75 (br, 4H), 2.65 (br, 6H), 2.75 (m, 2H), 3.8 (s, 3H), 4.1 (m, 2H), 4.2 (br, 5H), 4.95 (sd, 1H), 6.45 (br, 1H), 6.8 (m, 7H). M/Z for $\rm{C}_{25}\rm{H}_{32}\rm{N}_{2}\rm{O}_{6}$ [M–H] $^{-}$ =457.

Example 2E28

Preparation of Compound 188: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-ethylphenoxy)propanamide(2R,3R)-2,3-dihydroxysuccinate

¹H NMR (D₂O, 400 mHz, ppm); 0.93 (t, 3H), 1.75 (br, 2H), 1.86 (br, 2H), 2.35 (q, 2H), 2.4 (br, 2H), 2.9 (br, 2H), 3.25 (m,

88

2H), 3.4 (br, 2H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.6 (m, 5H), 7.0 (d, 2H). M/Z for $\rm C_{26}H_{34}N_2O_5.C_4H_6O_6$ [M–H] $^-$ =454.

Example 2E29

Preparation of Compound 189: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-propionylphenoxy) propanamide(2R,3R)-2,3-dihydroxysuccinate

 1 H NMR (D₂O, 400 mHz, ppm); 0.93 (t, 3H), 1.75 (br, 2H), 1.86 (br, 2H), 2.45 (br, 2H), 2.8 (q, 2H), 2.9 (br, 2H), 3.25 (m, 2H), 3.4 (br, 2H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.5 (d, 1H), 6.5 (d, 2H), 6.7 (d, 2H), 7.7 (d, 2H). M/Z for $C_{27}H_{34}N_{2}O_{6}.C_{4}H_{6}O_{6}$ [M-H]⁻=483.

Example 2E30

Preparation of Compound 193: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(3-oxobutyl)phenoxy) propanamide(2R,3R)-2,3-dihydroxysuccinate

 1 H NMR (D₂O, 400 mHz, ppm); 1.75 (br, 2H), 1.86 (br, 2H), 1.94 (s, 3H), 2.45 (br, 2H), 2.6 (m, 4H), 2.9 (br, 2H), 3.25

10

40

45

50

55

60

65

(m, 2H), 3.4 (br, 2H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.6 (m, 5H), 7.0 (d, 2H). M/Z for $\rm C_{28}H_{36}N_2O_6.C_4H_6O_6$ [M–H]=497.

Example 2E31

Preparation of Compound 202: N-((1R,R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(2-methoxyethyl)phenoxy)propanamide(2R,R)-2,3-dihydroxysuccinate

 $^{1}\mathrm{H}$ NMR (D₂O, 400 mHz, ppm); 1.75 (br, 2H), 1.86 (br, 35 2H), 2.45 (br, 2H), 2.62 (t, 2H), 2.9 (br, 2H), 3.1 (s, 3H), 3.25 (m, 2H), 3.4 (br, 4H), 3.9 (br, 6H), 4.3 (br, 3H), 4.6 (br, 1H), 6.6 (m, 5H), 7.0 (d, 2H). M/Z for C₂₇H₃₆N₂O₆.C₄H₆O₆ [M-H]^=485.

Example 2E32

Preparation of Compound 63: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3'-methoxybiphenyl-4-yl)acetamide

 $^1\mathrm{H}$ NMR (CDCl $_3$, 400 mHz, ppm); 1.7 (br, 4H), 2.5 (br, 4H), 2.75 (m, 2H), 3.5 (br, 2H), 3.9 (sd, 3H), 4.2 (m, 5H), 4.95 (sd, 1H), 5.9 (br, 1H), 6.5-7.6 (m, 11H). M/Z for C $_{30}\mathrm{H}_{34}\mathrm{N}_2\mathrm{O}_5$ [M–H] $^-$ =503.

Example 2E33

Preparation of Compound 127: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-ethoxyphenyl)-4-oxobutanamide

 $^{1}\rm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm); 1.4 (t, 3H), 1.8 (br, 4H), 2.7 (br, 6H), 3.2 (m, 2H), 4.05 (q, 2H), 4.2 (m, 2H), 4.25 (m, 5H), 4.95 (sd, 1H), 6.05 (br, 1H), 6.9 (m, 5H), 7.95 (d, 2H). M/Z for $\rm{C}_{27}\rm{H}_{34}\rm{N}_{2}\rm{O}_{6}^{=483}.$

Example 2E34

Preparation of Compound 154: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-methoxyphenyl)-4-oxobutanamide

15

20

25

45

50

55

60

65

 $^{1}\rm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm); 1.8 (br, 4H), 2.7 (br, 6H), 3.2 (m, 1H), 3.45 (s, 3H), 3.9 (s, 3H), 4.2 (m, 5H), 4.95 (sd, 1H), 6.05 (br, 1H), 6.9 (m, 5H), 7.95 (d, 2H). M/Z for $\rm{C}_{26}\rm{H}_{32}\rm{N}_{2}\rm{O}_{6}\,[M-H]^{-}=469.$

Example 2E35

Preparation of Compound 181: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-isopropoxyphenyl)-6-oxohexanamide

 $^{1}\rm{H}$ NMR (CDCl₃, 400 mHz, ppm); 1.4 (d, 6H), 1.8 (br, 8H), 2.15 (br, 2H), 2.8 (br, 10H), 4.25 (m, 5H), 4.65 (m, 1H), 4.95 (sd, 1H), 6.05 (br, 1H), 6.9 (m, 5H), 7.95 (d, 2H). M/Z for $^{35}\rm{C}_{30}\rm{H}_{40}\rm{N}_{2}\rm{O}_{6}\,[\rm{M}\text{-H}]^{-}\text{=}525.$

Example 2E36

Preparation of Compound 191: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-methoxyphenyl)-5-oxopentanamide(2R,3R)-2,3-dihydroxysuccinate

 $^{1}H \ NMR \ (D_{2}O, \ 400 \ mHz, \ ppm); \ 1.40 \ (br, \ 1H), \ 1.53 \ (br, \ 1H), \ 1.75 \ (br, \ 2H), \ 1.91 \ (br, \ 2H), \ 1.98 \ (m, \ 1H), \ 2.15 \ (m, \ 1H), \ 2.45 \ (m, \ 2H), \ 2.95 \ (m, \ 2H), \ 3.35 \ (dd, \ 2H), \ 3.4 \ (m, \ 2H), \ 3.68 \ (br, \ 5H), \ 3.77 \ (br, \ 2H), \ 4.3 \ (br, \ 3H), \ 4.68 \ (br, \ 1H), \ 6.47 \ (d, \ 2H), \ 6.65 \ (d, \ 2H), \ 6.85 \ (d, \ 2H), \ 7.63 \ (d, \ 2H). \ M/Z \ for \ C_{27}H_{34}N_2O_6; C_4H_6O_6 \ [M-H]=483.$

Example 2E37

Preparation of Compound 265: N-((1R,2R)-1-(benzo [8][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl) propan-2-yl)-5-(4-isopropoxyphenyl)-5-oxopentanamide(2S,3S)-2,3-dihydroxysuccinate

 $^{1}\text{H NMR (400 MHz, CD}_{3}\text{OD) } \delta \ 1.30 \ (\text{sd, 6H}), \ 1.70\text{-}1.85 \\ (\text{m, 2H}), \ 2.04 \ (\text{br, 4H}), \ 2.09\text{-}2.26 \ (\text{m, 2H}), \ 2.64\text{-}2.82 \ (\text{m, 2H}), \\ 3.31\text{-}3.48 \ (\text{m, 5H}), \ 4.37 \ (\text{s, 2H}), \ 4.43 \ (\text{br, 1H}), \ 4.68 \ (\text{m, 1H}), \\ 4.71 \ (\text{sd, 1H}), \ 5.76 \ (\text{s, 2H}), \ 6.66 \ (\text{d, 1H}), \ 6.82\text{-}6.95 \ (\text{m, 4H}), \\ 40 \ \ 7.84 \ (\text{d, 2H}); \ \text{MS for } C_{28}H_{36}N_{2}O_{6}.C_{4}H_{6}O_{6}: \ [\text{M-H}]^{-} \ 645. \\ \end{cases}$

Example 2E38

Preparation of Compound 267: N-((1R,2R)-1-(benzo [8][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl) propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexana-mide(2S,3S)-2,3-dihydroxysuccinate

15

20

25

30

40

45

 ^{1}H NMR (400 MHz, CD₃OD) δ 1.49 (br, 4H), 2.03 (br, 4H), 2.89 (t, 2H), 3.33-3.46 (m, 6H), 3.84 (s, 3H), 4.37 (s, 2H), 4.43 (d, 1H), 4.76 (br, 1H), 5.81 (s, 2H), 6.68 (d, 1H), 6.81 (d, 1H), 6.88 (s, 1H), 6.96 (d, 2H), 7.92 (d, 2H); MS for $5 C_{27}H_{34}N_{2}O_{6}.C_{4}H_{6}O_{6}.$ [M–H] $^{-}$ 633.

Example 2E39

Preparation of Compound 268: N-((1R,2R)-1-(benzo [δ][1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl) propan-2-yl)-7-(4-isopropoxyphenyl)-7-oxoheptanamide(2S,3S)-2,3-dihydroxysuccinate

 $^{1}\mathrm{H}$ NMR (400 MHz, CD_3OD) δ 1.15-1.18 (m, 2H), 1.30 (d, 6H), 1.40-1.45 (m, 2H), 1.57-1.65 (m, 2H), 2.03 (br, 4H), $_{35}$ 2.12-2.17 (m, 2H), 2.88 (t, 2H), 3.33-3.48 (m, 5H), 4.38 (s, 2H), 4.42 (d, 1H), 4.67 (m, 1H), 4.78 (d, 1H), 5.83 (d, 2H), 6.71 (d, 1H), 6.82 (d, 1H), 6.89 (s, 1H), 6.92 (d, 2H), 7.90 (d, 2H); MS for C_{30}H_{40}N_{2}O_{6}\cdot\mathrm{C_{4}H_{6}O_{6}}\cdot\mathrm{[M-H]^{-}} 675.

Example 2E40

Preparation of Compound 197: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-methoxyphenoxy) butanamide(2S,3S)-2,3-dihydroxysuccinate

 1 H NMR (400 MHz, CD₃OD) δ 1.78-1.91 (m, 2H), 2.00 65 (br, 4H), 2.32 (t, 2H), 3.33-3.47 (m, 6H), 3.69 (s, 3H), 3.72 (t, 2H), 4.11 (br, 4H), 4.37 (s, 2H), 4.41 (d, 1H), 4.72 (d, 1H),

6.69-6.86 (m, 7H); MS for $C_{26}H_{34}N_2O_6.C_4H_6O_6$: [M–H]⁻621.

Example 2E41

Preparation of Compound 187: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(3-methylbutanoyl) phenoxy)propanamide(2S,3S)-2,3-dihydroxysuccinate

 1 H NMR (400 MHz, CD₃OD) δ 0.95 (d, 6H), 2.00 (br, 4H), 2.17 (m, 2H), 2.66 (t, 2H), 2.78 (d, 2H), 3.34-3.44 (m, 5H), 4.12-4.17 (m, 6H), 4.40 (s, 2H), 4.45 (d, 1H), 4.73 (sd, 1H), 6.67 (d, 1H), 6.79 (d, 1H), 6.86 (s, 1H), 6.93 (d, 2H), 7.91 (d, 2H); MS for C₂₉H₃₈N₂O₆.C₄H₆O₆: [M–H] $^{-}$ 661.

Example 2E42

Preparation of Compound 83: 2-(4-chlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide

¹H NMR (400 MHz, CDCl₃) δ 1.76 (br, 4H), 2.63 (br, 4H), 2.78 (dd, 1H), 2.89 (dd, 1H), 4.24 (s, 4H), 4.27 (br, 1H), 4.36

15

20

25

40

45

50

55

60

(q, 2H), 4.94 (d, 1H), 6.71 (d, 1H), 6.77-6.82 (m, 4H), 6.86 (d, 1H), 7.24 (s, 1H); MS for $C_{23}H_{27}CIN_2O_5$: [M–H] $^-$ 447.

(d, 1H), 7.14 (t, 1H), 7.28-7.36 (m, 2H); MS for $C_{29}H_{32}N_2O_5$: $[M-H]^-$ 489.

Example 2E45

Example 2E43

5

Preparation of Compound 2-(3,4-dichlorophenoxy)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)aceta-mide

Preparation of Compound 280: 2-(3,4-difluorophenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide

F HO HO O

 $^{1}\text{H NMR (400 MHz, CDCl}_{3}) \, \delta \, 1.78 \, (\text{br, 4H}), \, 2.67 \, (\text{br, 4H}), \qquad 1 \text{H}), \\ 2.79 \, (\text{dd, 1H}), \, 2.92 \, (\text{dd, 1H}), \, 4.25 \, (\text{br, s, 5H}), \, 4.35 \, (\text{q, 2H}), \\ 4.95 \, (\text{d, 1H}), \, 6.71\text{-}6.84 \, (\text{m, 5H}), \, 7.01 \, (\text{d, 1H}), \, 7.34 \, (\text{d, 1H}); \quad ^{35} \, 434. \\ \text{MS for C}_{23}\text{H}_{26}\text{Cl}_{2}\text{N}_{2}\text{O}_{5}; \, [\text{M-H}]^{-}482. \\ \end{cases}$

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl3) δ 1.80 (br, 4H, 2.68 (br, 4H), 2.84 (d, 2H), 3.45 (s, 2H), 4.17 (m, 1H), 4.25 (s, 4H), 4.88 (d, 1H), 5.88 (d, 1H), 6.65 (d, 1H), 6.79 (d, 1H), 6.95 (m, 1H), 6.95 (t, 1H), 7.13 (q, 1H); MS for $\mathrm{C_{23}H_{26}F_{2}N_{2}O_{4}}$: [M–H] 434.

Example 2E44

Example 2E46

Preparation of Compound 86: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(3-phenoxyphenyl)acetamida

Preparation of Compound 103: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-yl)-2-(4-(trifluoromethoxy)phenyl)acetamide

 ^{1}H NMR (400 MHz, CDCl $_{3}$) δ 1.72 (br, 4H), 2.57 (br, 4H), 2.75-2.80 (m, 2H), 3.45 (s, 2H), 4.11-4.13 (m, 1H), 4.23 (s, 65 4H), 4.84 (d, 1H), 5.86 (d, 1H), 6.55 (dd, 1H), 6.71 (d, 1H), 6.74 (d, 1H), 6.80 (br, 1H), 6.85 (dd, 1H), 6.92 (dd, 1H), 6.98

¹H NMR (400 MHz, CDCl₃) δ 1.65 (br, 4H), 2.48 (br, 4H), 2.69 (d, 2H), 3.40 (s, 2H), 4.08 (m, 1H), 4.17 (s, 4H), 4.80 (s,

15

20

25

40

45

50

55

60

 $1H), 5.84\,(t,1H), 6.55\,(d,1H), 6.66\,(s,1H), 6.70\,(d,1H), 7.10$ (t, 3H); MS for $C_{24}H_{27}F_3N_2O_5$: [M–H] $^-$ 481.

 $4H), 4.87\,(s,1H), 5.80\,(d,1H), 6.66\,(d,1H), 6.8\,(m,3H), 7.00$ (d, 1H), 7.18 (s, 1H); MS for $C_{25}H_{31}ClN_2O_5$: [M–H]⁻ 475.

Example 2E47

5

Preparation of Compound 90: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(thiophen-2-yl)isoxazole-3-carboxamide

¹H NMR (400 MHz, CDCl₃) δ 1.82 (br, 4H), 2.73-2.81 (m, 4H), 2.89-2.93 (m, 1H), 3.02-3.07 (m, 1H), 4.23 (s, 4H), 4.41 (br, 1H), 5.07 (s, 1H), 5.30 (d, 1H), 6.74 (s, 1H), 6.83 (t, 2H), 35 [M-H]-479. 6.90 (s, 1H), 7.12-7.14 (m, 2H), 7.47 (d, 1H), 7.52 (d, 1H); MS for $C_{23}H_{25}N_3O_5S$: $[M-H]^-456$.

Example 2E48

Preparation of Compound 92: 3-(3-chloro-4-methoxyphenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4] dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2yl)propanamide

¹H NMR (400 MHz, CDCl₃) δ 1.77 (br, 4H), 2.38 (t, 2H), 2.60 (br, 4H), 2.8 (m, 4H), 3.86 (s, 3H), 4.20 (br, 1H), 4.24 (s,

Example 2E49

Preparation of Compound 96: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(trifluoromethyl)phenyl)propanamide

¹H NMR (400 MHz, CDCl₃) δ 1.73 (br, 4H), 2.4 (m, 2H), 2.53 (m, 4H), 2.7 (m, 2H), 2.90-2.97 (m, 2H), 4.17 (br, 1H), 4.23 (s, 4H), 4.89 (s, 1H), 5.83 (br, 1H), 6.68 (d, 1H), 6.79 (d, 2H), 7.24 (d, 2H), 7.50 (d, 2H); MS for $C_{25}H_{29}F_3N_2O_5$:

Example 2E50

Preparation of Compound 101: 4-(benzo[d]thiazol-2yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)butanamide

¹H NMR (400 MHz, CDCl₃) δ 1.77 (br, 4H), 2.10-2.15 (m, 2H), 2.24-2.27 (m, 2H), 2.64-2.67 (m, 4H), 2.79-2.83 (m, 2H), 3.02 (t, 2H), 4.18 (s, 4H), 4.26 (br, 1H), 4.92 (d, 1H),

10

15

20

25

35

40

45

50

55

60

6.12 (br, 1H), 6.75-6.81 (m, 2H), 6.86 (s, 1H), 7.37 (t, 1H), 7.45(t, 1H), 7.85(d, 1H), 7.92(d, 1H); MS for C₂₆H₃₁N₃O₄S: $[M-H]^-482.$

Example 2E51

Preparation of Compound 102: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(2,3-dihydrobenzo[β][1, 4]dioxine-6-sulfonamido)hexanamide

¹H NMR (400 MHz, CDCl₃) δ 1.15-1.20 (m, 2H), 1.38-2.79(d, 2H), 2.87(t, 2H), 4.2(m, 9H), 4.91(br, 1H), 5.93(br,1H), 6.77 (q, 2H), 6.84 (s, 1H), 6.93 (d, 1H), 7.31 (d, 1H), 7.37 (s, 1H); MS for $C_{29}H_{39}N_3O_8S$: [M-H]⁻ 590.

Example 2E52

Preparation of Compound 104: N-(5-((1R,2R)-1-(2, 3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3pyrrolidin-1-yl)propan-2-ylamino)-5-oxopentyl)benzamide

¹H NMR (400 MHz, CDCl₃) δ 1.47-1.52 (m, 2H), 1.59- 65 1.69 (m, 2H), 1.77 (br, 4H), 2.15-2.21 (m, 2H), 2.62-2.65 (m, 4H), 2.81 (br, 2H), 3.30-3.42 (m, 2H), 4.19-4.23 (m, 5H), 4.94

(br, 1H), 5.98 (br, 1H), 6.76 (br, 1H), 6.78-6.86 (m, 3H), 7.40-7.50 (m, 3H), 7.80 (d, 2H); MS for $C_{27}H_{35}N_3O_5$: $[M-H]^-482.$

Example 2E53

Preparation of Compound 281: N1-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-N5-(thiazol-2-yl)glutaramide

¹H NMR (400 MHz, CDCl₃) δ 1.74 (br, 4H), 1.97-2.03 (m, 2H), 2.20-2.26 (m, 2H), 2.40-2.45 (m, 2H), 2.64-2.68 (m, $1.50\ (m,4H),\ 1.77\ (br,4H),\ 2.08\ (q,2H),\ 2.63-2.66\ (m,4H),\ _{30}\ \ 5H),\ 2.88\ (m,1H),\ 4.20\ (s,4H),\ 4.26-4.29\ (m,1H),\ 4.83\ (d,2H),\ 4.26-4.29\ (m,2H),\ 4.26-4.29\ (m,2H),\ 4.83\ (d,2H),\ 4.26-4.29\ (m,2H),\ 4.2$ 1H), 6.12 (br, 1H), 6.74-6.79 (m, 2H), 6.85 (s, 1H), 6.95 (d, 1H), 7.41 (d, 1H); MS for $C_{23}H_{30}N_4O_5S$: [M-H]⁻ 475.

Example 2E54

Preparation of Compound 282: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(3,4-dimethoxyphenyl)-5-oxopentanamide

 1 H NMR (400 MHz, CDCl₃) δ 1.76 (br, 4H), 1.92-2.00 (m, 2H), 2.21-2.26 (m, 2H), 2.60-2.65 (m, 4H), 2.70-2.95 (m, 4H), 3.93 (d, 6H), 4.17-4.23 (m, 5H), 4.90 (d, 1H), 5.96 (br,

10

15

40

45

102

1H), 6.75-6.79 (m, 2H), 6.85 (s, 1H), 6.87 (d, 1H), 7.50 (s, 1H), 7.55 (d, 1H); MS for $C_{28}H_{36}N_2O_7$: [M-H]⁻ 513.

Example 2E55

Preparation of Compound 283: N-((1R,2R)-1-(2,3dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-oxo-5-p-tolylpentana-

2H), 2.21-2.26 (m, 2H), 2.40 (s, 3H), 2.63-2.80 (m, 4H), 2.82-2.95 (m, 4H), 4.18-4.23 (m, 5H), 4.91 (d, 1H), 5.94 (br, 1H), 6.74-6.77 (m, 2H), 6.85 (s, 1H), 7.26 (d, 2H), 7.81 (d, 2H); MS for $C_{27}H_{34}N_2O_5$: [M-H]⁻ 467.

Example 2E56

Preparation of Compound 113: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-pyrrolidin-1-yl)propan-2-yl)-5-oxo-5-phenylpentanamide

¹H NMR (400 MHz, CDCl₃) δ 1.76 (br, 4H), 1.95-2.01 (m, 65 2H), 2.22-2.25 (m, 2H), 2.62-2.63 (m, 4H), 2.78-2.95 (m, 4H), 4.17-4.22 (m, 5H), 4.91 (sd, 1H), 5.99 (br, 1H), 6.77 (st,

2H), 6.85 (s, 1H), 7.44-7.58 (m, 3H), 7.92 (d, 2H); MS for $C_{26}H_{32}N_2O_5$: [M-H]⁻ 453.

Example 2E57

Preparation of Compound 284: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-isopropoxyphenyl)-5oxopentanamide

¹H NMR (400 MHz, CDCl₃) δ 1.36 (d, 6H), 1.75 (br, 4H), 1.90-2.02 (m, 2H), 2.20-2.25 (m, 2H), 2.60-2.66 (m, 4H), 1 H NMR (400 MHz, CDCl₃) δ 1.77 (br, 4H), 1.96-2.02 (m, $_{35}$ 2.70-2.86 (m, 4H), 4.17 (s, 4H), 4.22 (br, 1H), 4.62-4.65 (m, 1H), 4.89 (sd, 1H), 6.07 (d, 1H), 6.77 (s, 2H), 6.85 (s, 1H), 6.87 (d, 2H), 7.86 (d, 2H); MS for C₂₉H₃₈N₂O₆: [M-H]⁻ 511.

Example 2E58

Preparation of Compound 140: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxy-3,5-dimethylphenyl)-6-oxohexanamide

¹H NMR (400 MHz, CDCl₃) δ 1.61-1.63 (m, 4H), 1.77 (br, 4H), 2.16 (t, 2H), 2.32 (s, 6H), 2.61-2.67 (m, 4H), 2.74-2.89 (m, 2H), 2.91 (t, 2H), 3.75 (s, 3H), 4.21 (br, 5H), 4.90 (sd,

10

15

20

40

45

50

55

60

103

1H), 5.93 (br, 1H), 6.75-6.82 (m, 2H), 6.85 (sd, 1H), 7.61 (s, 2H); MS for $\rm C_{30}H_{40}N_2O_6$: [M–H] $^-$ 525.

Example 2E59

Preparation of Compound 141: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 1.62-1.64 (m, 4H), 1.76 (br, 30 4H), 2.17 (t, 2H), 2.61-2.65 (m, 4H), 2.72-2.79 (m, 2H), 2.89 (t, 2H), 3.86 (s, 3H), 4.20 (br, 5H), 4.89 (d, 1H), 6.01 (br, 1H), 6.77 (q, 2H), 6.85 (s, 1H), 6.91 (d, 2H), 7.90 (d, 2H); MS for $C_{28}H_{36}N_{2}O_{6}$: [M–H] $^{-}$ 497.

Example 2E60

Preparation of Compound 155: 6-(4-tert-butylphenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-oxohexanamide

 1 H NMR (400 MHz, CDCl₃) δ 1.34 (s, 9H), 1.63-1.65 (m, 65 4H), 1.77 (br, 4H), 2.17 (t, 2H), 2.64-2.66 (br, 4H), 2.75 (dd, 1H), 2.281 (dd, 1H), 2.91 (t, 2H), 4.20 (br, 5H), 4.90 (d, 1H),

104

6.02 (br, 1H), 6.77-6.82 (q, 2H), 6.85 (d, 1H), 7.46 (d, 2H), 7.86 (d, 2H); MS for $\rm C_{31}H_{42}N_2O_5$: [M–H] $^-$ 523.

Example 2E61

Preparation of Compound 156: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-(4-methoxyphenyl)-7-oxoheptanamide

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl $_{3}$) δ 1.25-1.30 (m, 2H), 1.55-1.70 (m, 4H), 1.77 (br, 4H), 2.13 (t, 2H), 2.61-2.66 (m, 4H), 2.74-2.82 (m, 2H), 2.88 (t, 2H), 3.86 (s, 3H), 4.20 (br, 5H), 4.90 (d, 1H), 5.93 (br, 1H), 6.78 (q, 2H), 6.85 (s, 1H), 6.91 (d, 2H), 7.92 (d, 2H); MS for $C_{29}H_{38}N_{2}O_{6}$: [M–H] $^{-}$ 511.

Example 2E62

Preparation of Compound 144: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-8-(4-methoxyphenyl)-8-oxooctanamide

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 1.25-1.33 (m, 4H), 1.54 (m, 2H), 1.68 (t, 2H), 1.78 (br, 4H), 2.11 (br, 2H), 2.65 (br, 4H), 2.76-2.11 (m, 4H), 3.86 (s, 3H), 4.21 (br, 5H), 4.90 (br, 1H), 6.02 (d, 1H), 6.78-6.84 (m, 3H), 6.91 (d, 2H), 7.92 (d, 2H); MS for C₃₀H₄₀N₂O₆: [M-H]^- 525.

Preparation of Compound 159: 7-(4-chlorophenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-oxoheptanamide

1-6- ₅ 5.9 -7- 2H

45

50

60

106

 $^{1}H\ NMR\ (400\ MHz,\ CDCl_{3})\ \delta\ 1.27\text{-}1.34\ (m,\ 11H),\ 1.56\text{-}\\ 1.71\ (m,\ 4H),\ 1.77\ (br,\ 4H),\ 2.13\ (t,\ 2H),\ 2.63\text{-}2.66\ (m,\ 4H),\\ 2.76\text{-}2.819\ (m,\ 2H),\ 2.91\ (t,\ 2H),\ 4.20\ (br,\ 5H),\ 4.90\ (sd,\ 1H),\\ 5\ 5.90\ (d,\ 1H),\ 6.81\ (q,\ 2H),\ 6.85\ (s,\ 1H),\ 7.46\ (d,\ 2H),\ 7.88\ (d,\ 2H);\ MS\ for\ C_{32}H_{44}N_{2}O_{5}\text{:}\ [M-H]^{-}\ 537.$

Example 2E65

Preparation of Compound 168: N-((1R,2R)-1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-1-hydroxy-3-pyr-rolidin-1-yl)propan-2-yl)-7-4-methoxyphenyl)-7-oxoheptanamide(2S,3S)-2,3-dihydroxysuccinate

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl $_{3}$) δ 1.26-1.37 (m, 2H), 1.57 (m, 2H), 1.68 (m, 2H), 1.77 (br, 4H), 2.13 (t, 2H), 2.62-2.65 (m, 4H), 2.76-2.82 (m, 2H), 2.90 (t, 2H), 4.20 (br, 5H), 4.90 (d, 1H), 5.93 (d, 1H), 6.78 (q, 2H), 6.85 (s, 1H), 7.42 (d, 2H), 7.87 40 (d, 2H); MS for $C_{28}H_{35}\mathrm{CIN}_{2}O_{5}$: [M–H] $^{-}$ 515.

Example 2E64

Preparation of Compound 160: 7-(4-tert-butylphenyl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-7-oxoheptanamide

 $^{1}\mathrm{H}$ NMR (400 MHz, CD_3OD) δ 1.15-1.19 (m, 2H), 1.40-1.47 (m, 2H), 1.60 (m, 2H), 2.02 (br, 4H), 2.09-2.21 (m, 2H), 2.90 (t, 2H), 3.35-3.49 (m, 5H), 3.83 (s, 3H), 4.12 (br, 4H), 4.38 (s, 2H), 4.43 (m, 1H), 4.74 (sd, 1H), 6.71 (d, 1H), 6.79 (dq, 1H), 6.86 (sd, 1H), 6.96 (d, 2H), 7.92 (d, 2H); MS for $C_{29}H_{38}N_{2}O_{6}.C_{4}H_{6}O_{6}$: [M–H] $^{-}$ 661.

Example 2E66

Preparation of Compound 162: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-(4-isopropoxyphenyl)-4-oxobutanamide

40

Example 2E67

Preparation of Compound 176: N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-4-oxo-4-(4-(trifluoromethyl)phenyl)butanamide(2S,3S)-2,3-dihydroxysuccinate

108

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 1.70 (br, 4H), 2.54 (br, 4H), 2.72-2.81 (m, 2H), 3.53 (s, 2H), 4.12-4.23 (m, 5H), 4.85 (d, 1H), 5.82 (d, 1H), 6.58 (dd, 1H), 6.70 (sd, 1H), 6.73 (d, 1H), 7.19 (d, 1H), 7.32-7.34 (m, 1H), 7.38 (t, 1H), 7.46-7.49 (m, 1H), 7.52 (d, 2H), 7.59 (d, 1H); $\mathrm{C_{29}H_{31}ClN_{2}O_{4}}$: [M–H]⁻⁵⁰⁷.

 $^{1}\mathrm{H}$ NMR (400 MHz, CD₃OD) δ 2.08 (br, 4H), 2.54-2.72 (m, 2H), 3.24-3.48 (m, 6H), 4.19 (s, 4H), 4.29 (m, 4H), 4.74 30 (sd, 1H), 6.76 (d, 1H), 6.86 (d, 1H), 6.92 (s, 1H), 7.81 (d, 2H), 8.13 (d, 2H); MS for C₂₆H₂₉F₃N₂O₅.C₄H₆O₆: [M–H] $^{-}$ 657.

Example 2E68

Preparation of Compound 65 (Genz-528152-1): 2-(3'-chlorobiphenyl-4-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide

Example 2E69

Preparation of Compound 262: N-[2-Hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]-3-(4-methoxy-phenoxy)-propionamide

 $^{1}H\ NMR\ (CDCl_{3}\ 400\ mHz,ppm);\ 1.75\ (m,\ 4H),\ 2.55\ (m,\ 2H),\ 2.65\ (m,\ 4H),\ 2.85\ (m,\ 2H),\ 3.8\ (s,\ 6H),\ 4.1\ (m,\ 2H),\ 4.25\ (m,\ 1H),\ 5.0\ (d,\ 1H),\ 6.5\ (br.\ d,\ 1H),\ 6.8\ (m,\ 4H),\ 7.25\ (m,\ 4H).$ $M/Z\ for\ C_{24}H_{32}N_{2}O_{5}\ [M-H]^{+}429.$

40

45

Preparation of Compound 270: 5-(4-Isopropoxy-phenyl)-5-oxo-pentanoic acid [2-hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]amide

 $^{1}\mathrm{H}$ NMR (CDCl₃ 400 mHz, ppm); 1.4 (d, 6H), 1.8 (m, 4H), 2.0 (m, 2H), 2.2 (m, 2H), 2.6 (m, 4H), 2.8 (m, 4H), 3.75 (s, 3H), 4.25 (m, 1H), 4.65 (m, 1H), 5.0 (d, 1H), 5.95 (br, d, 1H), 30 6.85 (m, 4H), 7.25 (m, 2H), 7.9 (m, 2H). M/Z for $C_{24}H_{32}N_{2}O_{5}$ [M–H] $^{+}$ 483.3.

Example 2E71

Preparation of Compound 285: 7-(4-Methoxy-phenyl)-7-oxo-heptanoic acid [2-hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]-amide

¹H NMR (CDCl₃ 400 mHz, ppm); 1.25 (m, 2H), 1.6 (m, 65 4H), 1.8 (m, 4H), 2.15 (m, 2H), 2.65 (m, 4H), 2.85 (m, 4H), 3.75 (s, 3H), 3.9 (s, 3H), 4.2 (m, 1H), 5.0 (d, 1H), 5.9 (br, d,

110

1H), 6.85 (d, 2H), 6.95 (d, 2H), 7.2 (d, 2H), 7.95 (d, 2H). M/Z for $\rm C_{24}H_{32}N_2O_5$ [M–H] $^+$ 483.3

Example 2E72

Preparation of Compound 262: N-[2-Hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]-3-(4-methoxy-phenoxy)-propionamide

 ${}^{1}\text{H NMR (CDCl}_{3} \ 400 \ \text{mHz, ppm}); \ 1.75 \ (\text{m}, \ 4\text{H}), \ 2.55 \ (\text{m}, \ 2\text{H}), \ 2.65 \ (\text{m}, \ 4\text{H}), \ 2.85 \ (\text{m}, \ 2\text{H}), \ 3.8 \ (\text{s}, \ 6\text{H}), \ 4.1 \ (\text{m}, \ 2\text{H}), \ 4.25 \ (\text{m}, \ 1\text{H}), \ 5.0 \ (\text{d}, \ 1\text{H}), \ 6.5 \ (\text{br}, \ d, \ 1\text{H}), \ 6.8 \ (\text{m}, \ 4\text{H}), \ 7.25 \ (\text{m}, \ 4\text{H}). \ M/Z \ \text{for} \ C_{24} H_{32} N_2 O_5 \ [\text{M}-\text{H}]^+ \ 429.$

Example 2E73

Preparation of Compound 270: 5-(4-Isopropoxy-phenyl)-5-oxo-pentanoic acid [2-hydroxy-2-(4-methoxy-phenyl)-1-pyrrolidin-1-ylmethyl-ethyl]amide

¹H NMR (CDCl₃ 400 mHz, ppm); 1.4 (d, 6H), 1.8 (m, 4H), 2.0 (m, 2H), 2.2 (m, 2H), 2.6 (m, 4H), 2.8 (m, 4H), 3.75 (s,

45

50

55

60

Example 2E74

Preparation of Compound 305

 $^{1}\mathrm{H}$ NMR (CDCl₃ 400 mHz, ppm); 1.25 (m, 14H), 1.6 (m, 4H), 1.8 (m, 4H), 2.1 (t, 2H), 2.6 (t, 2H), 2.8 (m, 6H), 4.2 (m, 5H), 4.9 (d, 1H), 6.0 (br d, 1H), 6.8 (m, 3H), 7.2 (m, 1H), 7.5 40 (m, 1H), 8.4 (m, 2H). M/Z for C₂₄H₃₂N₂O₅ [M–H] $^{-}$ 538.

Example 2E75

Preparation of Compound 320: Octanoic acid [2-hydroxy-2(4-methoxy-phenyl)-1-Pyrrolidin1-ylmethylethyl]-amide

112

 $^{1}\mathrm{H}$ NMR (CDCl $_{3}$ 400 mHz, ppm); 0.9 (t, 3H), 1.2 (m, 8H), 1.5 (m, 2H), 1.8 (m, 4H), 2.1 (t, 2H), 2.65 (m, 4H), 2.8 (d, 2H), 3.8 (s, 3H), 4.2 (m, 1H), 4.95 (d, 1H), 5.9 (br d, 1H), 6.9 (2s, 2H), 7.25 (m, 2H). M/Z for C $_{22}\mathrm{H}_{36}\mathrm{N}_{2}\mathrm{O}_{3}$ [M–H] $^{+}$ 377.4.

Example 2E76

Preparation of Cyclic Amide Analogs

Cyclic amide analogs were prepared according to Scheme 6. 2-Amino-1-(2,3-dihydro-benzo[1,4]dioxin-6-yl)-3-pyrro-lidin-1-yl-propan-1-ol was prepared according to the preparation of intermediate 4 of U.S. Pat. No. 6,855,830 B2. This amine was coupled with various nitriles in potassium carbonate and glycerol, under an atmosphere of nitrogen, for example, at 115° C. for 18 hours. Compound 323 characterized by the following structural formula was prepared by following Scheme 6. Compound 323 was purified by column chromatography using a mixture of methanol and methylene chloride.

¹H NMR (CDCl₃ 400 mHz, ppm); 0.95 (t, 3H), 1.35 (m, 2H), 1.6 (m, 2H), 1.8 (m, 4H), 2.7 (m, 6H), 2.8 (m, 2H), 4.2

40

45

65

(m, 5H), 5.4 (d, 1H), 6.85 (m, 3H), 7.2 (m, 2H), 7.9 (d, 2H). M/Z for $\rm C_{24}H_{32}N_2O_5~[M-H]^-~421.54.$

Example 2E77

Preparation of N-((1R,2R)-1-(2,3-dihydrobenzo[b] [1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-(2-methoxyethoxy)phenyl)-5-oxopentanamide

 $^{1}\mathrm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm): 1.25 (t, 3H), 1.8 (br, $_{35}$ 4H), 1.95 (m, 2H), 2.05 (t, 3H), 2.25 (m, 2H), 3.65 (m, 4H), 2.90 (m, 4H), 3.4 (s, 4H), 3.8 (m, 2H), 4.15 (m, 9H), 4.95 (br, 1H), 5.95 (br, 1H), 6.88-6.95 (m, 5H), 7.9 (m, 2H). M/Z for $\mathrm{C}_{29}\mathrm{H}_{38}\mathrm{N}_{2}\mathrm{O}_{7}\,[\mathrm{M}\text{+H}]\text{=}527.$

Example 2E78

Preparation of N-((1R,2R)-1-(4-chlorophenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide

¹H NMR (CDCl₃, 400 mHz, ppm): 1.76 (br, 4H), 2.52-2.57 (sq, 2H), 2.60-2.73 (br, 4H), 2.88-2.96 (st, 2H), 3.8 (s, 3H),

114

 $\begin{array}{l} 3.96\text{-}4.0~(m,1H),\,4.06\text{-}4.11~(1H),\,4.21\text{-}4.24~(m,1H),\,5.07~(d,1H),\,6.57~(bd,\,1H),\,6.77\text{-}6.87~(sq,\,4H),\,7.20\text{-}7.27~(sd,\,6H).\\ M/Z~for~C_{23}H_{29}ClN_2O_4~[M\text{+}H]\text{=}433. \end{array}$

Example 2E79

Preparation of N-((1R,2R)-1-(4-chlorophenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide

 $^{1}\rm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm): 1.54-1.62 (br, 4H), 1.79 (br, 4H), 2.14 (t, 2H), 2.63-2.69 (br, 4H), 2.83-2.89 (m, 4H), 3.88 (s, 3H), 4.24 (br, 1H), 5.03 (d, 1H), 5.93 (d, 1H), 6.93 (d, 2H), 7.26-7.32 (m, 4H), 7.93 (d, 2H). M/Z for C $_{26}\rm{H}_{33}\rm{ClN}_{2}\rm{O}_{4}$ [M+H]=473.

Example 2E80

Preparation of N-((1R,2R)-1-hydroxy-1-(4-methoxy-3-methylphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide

15

20

25

40

 $^{1}\mathrm{H}$ NMR (CDCl₃, 400 mHz, ppm): 1.77 (br, 4H), 1.91-2.0 (m, 2H), 2.18 (s, 3H), 2.2-2.25 (m, 2H), 2.62-2.69 (m, 4H), 2.77-2.89 (m, 4H), 3.75 (s, 3H), 3.88 (s, 3H), 4.23 (m, 1H), 4.96 (sd, 1H), 5.93 (br, 1H), 6.75 (br, 1H), 6.94 (d, 2H), 7.1 (br, 2H), 7.88 (m, 2H). M/Z for C₂₈H₃₈N₂O₅ [M+H]=483.

Example 2E81

Preparation of N-((1R,2R)-1-hydroxy-1-(4-methoxy-3-methylphenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethoxy)phenyl)acetamide

 $^{1}\mathrm{H}$ NMR (CDCl $_{3}$, 400 mHz, ppm): 1.73 (br, 4H), 2.20 (s, 3H), 2.55 (br, 4H), 2.81 (st, 2H), 3.46 (s, 2H), 3.82 (s, 3H), 4.15 (m, 1H), 4.92 (sd, 1H), 5.85 (br, 1H), 672 (d, 1H), 6.95 (sd, 1H), 7.00 (br, 1H), 7.2 (m, 4H). M/Z for $\mathrm{C}_{24}\mathrm{H}_{29}\mathrm{F}_{3}\mathrm{N}_{2}\mathrm{O}_{4}$ [M+H]=467.

Example 2E82

Preparation of N-((1R,2R)-1-hydroxy-3-(pyrrolidin-1-yl)-1-(2,2,3,3-tetrafluoro-2,3-dihydrobenzo[b][1,4] dioxin-6-yl)propan-2-yl)octanamide

$$\bigcap_{\mathbf{H}} \bigcap_{\mathbf{H}} \bigcap_{\mathbf{C}} \bigcap$$

¹H NMR (CDCl₃, 400 mHz, ppm): 0.9 (t, 3H), 1.2 (m, 11H), 1.5 (bm, 8H), 1.8 (br, 4H), 2.1 (m, 2H), 2.65 (m, 4H),

116

2.90 (m, 2H), 4.2 (m, 1H), 5.05 (d, 1H), 5.85 (br, 1H), 7.2 (m, 3H). M/Z for $\rm C_{23}H_{32}F_4N_2O_4$ [M+H]=477.

Example 2E83

Preparation of N-((1R,2R)-1-(2,2-difluorobenzo[d] [1,3]dioxol-5-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-2-(4-(trifluoromethoxy)phenyl)acetamide

$$\bigcap_{\substack{\text{OCF}_3}}^{\text{OH}} \bigcap_{\text{OCF}_3}^{\text{OH}} \bigcap_{\text$$

 $^{1}\mathrm{H}$ NMR (CDCl₃, 400 mHz, ppm): 1.75 (br, 4H), 2.55 (br, 4H), 2.85 (m, 2H), 3.45 (s, 2H), 4.1 (m, 1H), 5.0 (d, 1H), 5.85 (br, 1H), 6.8-6.95 (3H), 7.1-7.20 (4H). M/Z for $C_{23}H_{23}F_{5}N_{2}O_{5}\left[\mathrm{M}\!+\!\mathrm{H}\right]\!=\!503.$

Example 2E84

Preparation of N-((1R,2R)-1-hydroxy-1-(4-(2-phenoxyethoxy)phenyl)-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide

¹H NMR (CDCl₃, 400 mHz, ppm): 1.6 (m, 4H), 1.8 (m, 4H), 2.15 (t, 2H), 2.7 (m, 4H), 2.85 (m, 4H), 3.8 (s, 3H), 4.25

40

(m, 1H), 4.3 (s, 3H), 5.0 (d, 1H), 5.95 (br, 1H), 6.9 (m, 7H), 7.2 (m, 4H), 7.95 (m, 2H). M/Z for $\mathrm{C_{34}H_{42}N_2O_6}\,[\mathrm{M+H}]$ =575.

Example 2E85

Preparation of N-((1R,2R)-1-(4-(cyclobutylmethoxy) phenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide

 $^{1}\mathrm{H}$ NMR (CDCl₃, 400 mHz, ppm): 1.6 (br, 4H), 1.9 (m, 9H), 2.05 (m, 5H), 2.75-3.0 (m, 9H), 3.8 (m, 5H), 4.3 (m, 1H), 5.0 (m, 1H), 6.2 (br, 1H), 6.9 (m, 4H), 7.25 (m, 2H), 7.9 (m, 2H). M/Z for C₃₁H₄₂N₂O₅ [M+H]=523.

Example 2E86

Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy) phenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide

¹H NMR (CDCl₃, 400 mHz, ppm): 1.6 (m, 8H), 1.8 (m, 65 10H), 2.15 (t, 2H), 2.65 (m, 4H), 2.8 (d, 2H), 2.9 (m, 5H), 2.95 (s, 3H), 4.0 (t, 2H), 4.15 (m, 1H), 4.45 (t, 1H), 4.55 (t, 1H),

118

4.95 (br, 2H), 5.9 (br, 1H), 6.90 (m, 4H), 7.20 (m, 2H), 7.95 (m, 2H), 8.05 (br, 1H). M/Z for $\rm C_{30}H_{41}FN_2O_5$ [M+H]=529.

Example 2E87

Preparation of N-((1R,2R)-1-hydroxy-3-(pyrrolidin-1-yl)-1-(4-(3-(p-tolyloxy)propoxy)phenyl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide

 ^{1}H NMR (CDCl₃, 400 mHz, ppm): 1.65 (m, 4H), 1.8 (m, 4H), 2.15 (t, 2H), 2.25 (t, 2H), 2.3 (s, 3H), 2.65 (m, 4H), 2.8 (m, 2H), 2.9 (t, 2H), 3.85 (s, 3H), 4.15 (m, 4H), 4.25 (m, 1H), 4.95 (br, 1H), 6.85 (br, 1H), 6.8-6.95 (m, 6H), 7.05 (m, 2H), 7.2 (m, 2H), 7.95 (2H). M/Z for $C_{36}H_{46}N_{2}O_{6}$ [M+H]=603.

Example 2E88

Preparation of N-((1R,2R)-1-(4-butoxyphenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide

¹H NMR (CDCl₃, 400 mHz, ppm): 1.0 (t, 3H), 1.5 (m, 2H), 1.65 (m, 4H), 1.8 (m, 6H), 2.15 (t, 2H), 2.65 (m, 4H0, 2.8 (m, 2H), 2.9 (t, 2H), 3.85 (s, 3H), 3.9 (t, 2H), 4.15 (m, 1H), 4.95

15

20

25

30

45

50

Example 2E89

Preparation of N-((1R,2R)-1-(4-(hexyloxy)phenyl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-5-(4-(2-methoxy)phenyl)-5-oxopentanamide

 $^{1}\rm{H}$ NMR (CDCl3, 400 mHz, ppm): 0.95 (t, 3H), 1.35 (m, 4H), 1.45 (m, 2H), 1.7 (m, 6H), 1.95 (m, 2H), 2.20 (m, 2H), 2.65 (m, 4H), 2.85 (m, 4H), 3.45 (s, 3H), 3.75 (m, 2H), 3.90 (t, 2H), 4.15 (m, 2H), 4.25 (m, 1H), 4.95 (m, 1H), 6.0 (br, 1H), 6.8 (m, 2H), 6.9 (m, 2H), 7.2 (m, 2H), 7.90 (m, 2H). M/Z for $\rm{C_{33}H_{48}N_2O_{6}}$ [M+H]=569.

Example 2E90

Preparation of N-((1R,2R)-1-(4-(hexyloxy)phenyl)-1-hydroxy-3-((S)-3-hydroxypyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide

120

 1 H NMR (CDCl₃, 400 mHz, ppm): 0.95 (t, 3H), 1.35 (m, 4H), 1.45 (m, 2H), 1.75 (m, 3H), 2.1 (m, 1H), 2.4 (m, 1H), 2.55 (t, 2H), 2.75 (m, 3H), 2.85 (m, 1H), 3.0 (m, 1H), 3.75 (s, 3H), 3.90 (t, 2H), 4.05 (m, 2H), 4.1 (m, 1H), 4.15 (m, 1H), 5.0 (br, 1H), 6.6 (br, 1H), 6.8 (m, 6H), 7.2 (m, 2H). M/Z for $C_{29}H_{42}N_2O_6$ [M+H]=515.

Example 2E91

Preparation of 2-(4'-chlorobiphenyl-4-yl)-N-((1R, 2R)-3-((R)-3-fluoropyrrolidin-1-yl)-1-hydroxy-1-(4-isopropoxyphenyl)propan-2-yl)acetamide

 $^{1}\mathrm{H}$ NMR (CDCl3, 400 mHz, ppm): 1.15 (m, 6H), 2.10 (m, 2H), 2.4 (q, 1H), 2.5-2.75 (m, 4H), 2.95 (m, 2H), 3.55 (d, 2H), 4.15 (m, 1H), 4.45 (m, 1H), 4.85 (br, 1H), 5.10 (m, 1H), 5.9 (br, 1H), 6.75 (m, 2H), 7.05 (br, 2H), 7.20 (m, 2H), 7.4 (m, 2H), 7.5 (m, 4H). M/Z for C30H34CIFN2O3 [M+H]=528.

Example 2E92

Preparation of N-((1R,2R)-1-hydroxy-3-((S)-3-hydroxypyrrolidin-1-yl)-1-(4-isopropoxyphenyl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide

¹H NMR (CDCl₃, 400 mHz, ppm): 1.35 (d, 6H), 1.7 (m, 1H), 2.1 (m, 1H), 2.45 (m, 1H), 2.55 (t, 2H), 2.7-2.9 (m, 4H),

10

15

40

45

3.0 (m, 1H), 3.8 (s, 3H), 4.05 (m, 1H), 4.15 (m, 1H), 4.20 (m, 1H), 4.35 (m, 1H), 4.5 (m, 1H), 4.95 (d, 1H), 6.55 (br, 1H), 6.75-6.85 (m, 6H), 7.2 (m, 2H). M/Z for $\rm C_{26}H_{36}N_2O_6$ [M+H]=473.

2H), 7.22 (d, 2H); MS for $C_{26}H_{43}FN_2O_5$ m/z 483 [M+H]

Example 2E93

Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy) phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl) propan-2-yl)-5-(4-methoxyphenyl)-5-oxopentana-

mide

¹H NMR (400 MHz, CDCl₃) δ =1.7-2.2 (m, 12H), 2.4 (dd, 1H), 2.65-2.9 (m, 6H), 3.0 (dd, 1H), 3.90 (s, 3H), 3.91 (dd, 2H), 4.1-4.22 (m, 1H), 4.3-4.4 (m, 1H), 4.4 (dd, 1H), 4.6 (dd, 1H), 4.91 (d, 1H), 6.19 (d, 1H), 6.83 (d, 2H), 6.92 (d, 2H), 7.22 (d, 2H), 7.9 (d, 2H); MS for C₂₉H₃₉FN₂O₆ m/z 531 ₃₅ [M+H].

Example 2E94

Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy) phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl) propan-2-yl)-8-methoxyoctanamide

 ^{1}H NMR (400 MHz, CDCl₃) $\delta{=}1.2\text{-}1.34$ (m, 6H), 1.45-1.6 (m, 4H), 1.7-1.8 (m, 1H), 1.86-1.95 (m, 4H), 2.0-2.2 (m, 4), 65 2.4-2.5 (m, 2H), 2.7-2.8 (m, 4H), 2.98 (dd, 1H), 3.3 (s, 3H), 3.53 (dd, 1H), 4.0 (dd, 2H), 4.1-4.2 (m, 1H), 4.3-4.4 (m, 1H),

Example 2E95

Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy) phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl) propan-2-yl)-4-(4-methoxyphenoxy)butanamide

 $^{1}\text{H NMR (400 MHz, CDCl}_{3}) \ \delta = 1.6\text{-}2.2 \ (\text{m}, 9\text{H}), \ 2.3\text{-}2.5 \ (\text{m}, 4\text{H}), \ 2.6\text{-}2.8 \ (\text{m}, 5), \ 2.9 \ (\text{dd}, 1\text{H}), \ 3.7 \ (\text{s}, 3\text{H}), \ 3.85 \ (\text{dd}, 30) \ 2\text{H}), \ 3.95 \ (\text{dd}, 2\text{H}), \ 4.2\text{-}4.3 \ (\text{m}, 2\text{H}), \ 4.5 \ (\text{dd}, 1\text{H}), \ 4.6 \ (\text{dd}, 1\text{H}), \ 4.9 \ (\text{d}, 1\text{H}), \ 6.0 \ (\text{d}, 1\text{H}), \ 6.7\text{-}7 \ (\text{m}, 6\text{H}), \ 7.1\text{-}7.2 \ (\text{d}, 2\text{H}); \ MS \ for \ C_{28}H_{39}FN_{2}O_{6} \ \text{m/z} \ 519 \ [\text{M+H}].$

Example 2E96

Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy) phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl) propan-2-yl)-3-(4-methoxyphenoxy)propanamide

 ^{1}H NMR (400 MHz, CDCl₃) $\delta{=}1.6{\text{-}}1.7$ (m, 1H), 1.8-2 (m, 4H), 2.1-2.2 (m, 1), 2.4-2.5 (m, 1H), 2.6 (t, 2H), 2.7-2.85 (m, 4H), 3.0 (dd, 1H), 3.7 (s, 3H), 4.0 (t, 2H), 4.1-4.3 (m, 4H), 4.5 (dd, 1H), 4.6 (dd, 1H), 4.98 (d, 1H), 6.6 (d, 1H), 6.7-6.9 (m, 6H), 7.1-7.22 (d, 2H); MS for C $_{27}H_{37}FN_{2}O_{6}$ m/z 505 [M+H].

45

50

55

Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy) phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl) propan-2-yl)-7-(4-methoxyphenyl)-7-oxoheptanamide

124

 $^{1}\text{H NMR } (400 \text{ MHz, } \text{CD}_{3}\text{OD}) \ \delta = 1.4\text{-}1.6 \text{ (m, } 4\text{H), } 1.6\text{-}1.8 \\ (\text{m, } 5\text{H), } 2.0\text{-}2.2 \text{ (m, } 1\text{H), } 2.2\text{-}2.3 \text{ (m, } 2\text{H), } 2.4\text{-}2.6 \text{ (m, } 3\text{H), } \\ 2.7\text{-}3.0 \text{ (m, } 5\text{H), } 3.8 \text{ (s, } 3\text{H), } 3.9 \text{ (dd, } 1\text{H), } 4.1\text{-}4.25 \text{ (m, } 1\text{H), } \\ 4.3\text{-}4.38 \text{ (m, } 1\text{H), } 4.4 \text{ (dd, } 1\text{H), } 4.5 \text{ (dd, } 1\text{H), } 6.8 \text{ (d, } 2\text{H), } 7.1 \\ 5 \text{ (d, } 2\text{H), } 7.2 \text{ (d, } 2\text{H), } 8 \text{ (d, } 2\text{H); } \text{MS for } \text{C}_{30}\text{H}_{41}\text{FN}_{2}\text{O}_{6} \text{ m/z } 545 \\ \text{[M+H]}$

 1 H NMR (400 MHz, CDCl₃) δ=1.1-1.4 (m, 3H), 1.5-2.0 (m, 12H), 2.1-2.2 (dd, 4H), 2.4-2.90 (m, 10H), 3.0 (dd, 1H), 3.75 (s, 3H), 3.9 (dd, 2H), 4.1-4.2 (m, 1H), 4.3-4.4.5 (m, 2H), 4.57 (dd, 1H), 4.9 (d, 1H), 5.9 (d, 1H), 6.8 (d, 2H), 6.9 (d, 2H), 35 7.2 (d, 2H), 7.9 (d, 2H); MS for $C_{31}H_{43}FN_{2}O_{6}$ m/z 559 [M+H].

Example 2E99

Preparation of N-((1S,2R)-1-(5-chlorothiophen-2-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide

Example 2E98

Preparation of N-((1R,2R)-1-(4-(4-fluorobutoxy) phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl) propan-2-yl)-6-(4-methoxyphenyl)-6-oxohexanamide

CI S OH O

NH O 65

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta{=}1.7$ (broad s, 4H), 2.5-2.7 (m, 7H), 2.8 (dd, 1H), 2.94 (dd, 1H), 3.77 (s, 3H), 4.1-4.2 (m, 2H), 4.3-4.35 (m, 1H), 5.18 (d, 1H), 6.55 (d, 1H), 6.66 (d, 1H), 6.67 (d, 1H), 6.7-6.9 (m, 4H); MS for C $_{21}\mathrm{H}_{27}\mathrm{ClN}_{2}\mathrm{O}_{4}\mathrm{S}$ m/z 439 [M+H].

15

20

25

40

45

50

55

60

Preparation of N-((1S,2R)-1-hydroxy-1-(3-methylthiophen-2-yl)-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-yl)-3methoxyphenoxy)propanamide 2,2,2-trifluoroacetate

 1 H NMR (400 MHz, CD₃OD) δ =1.8-2.2 (m, 4H), 2.24 (s, 3H), 2.5-2.8 (m, 2H), 3.0-3.2 (m, 2H), 3.5 (dd, 2H), 3.7 (s, 3H), 3.6-3.8 (m, 2H), 4.0-4.2 (m, 2H), 4.5 (dd, 1H), 5.2 (s, 1H), 6.8 (d, 1H), 6.84 (broad s, 4H), 7.2 (d, 1H); MS for $C_{22}H_{30}N_2O_4S \text{ m/z 419 [M+H]}.$

Example 2E101

Preparation of Compound 257: N-((1R,2R)-1-(2,3 $dihydrobenzo[\beta][1,4]dioxin-6-yl)-1-hydroxy-3-mor$ pholinopropan-2-yl)-3-(4-methoxyphenoxy)propanamide

¹H NMR (400 MHz, CDCl₃) δ =2.4-2.6 (m, 7H), 2.7 (dd, 1H), 3.5-3.7 (m, 4H), 3.8 (s, 3H), 4-4.2 (m, 2H), 4.2 (s, 4H),

Example 2E102

Preparation of Compound 261: N-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(piperidin-1-yl)propan-2-yl)-3-(4-methoxyphenoxy)propanamide

¹H NMR (400 MHz, CDCl₃) δ =1.4 (br, 2H), 1.6 (br, 4H), 2.2-2.8 (m, 6H), 3.8 (s, 3H), 4.0-4.2 (m, 2H), 4.2 (s, 4H), 4.2-4.3 (m, 1H), 4.9 (s, 1H), 6.4 (d, 1H), 6.7-6.9 (m, 7H); MSfor $C_{25}H_{34}N_2O_6$ m/z 471.1 [M+H].

Example 2B1

Preparation of Compound 6: 1-benzyl-3-((1R,2R)-1- $(2,3-dihydrobenzo[\beta][1,4]dioxin-6-yl)-1-hydroxy-3-$ (pyrrolidin-1-yl)propan-2-yl)urea

¹H NMR (400 MHz, CDCl₃) δ =1.7 (s, 4H), 2.4-2.6 (m, 5H), 2.6-2.7 (dd, 1H), 4.0 (m, 1H), 4.2 (s, 4H), 4.3 (m, 2H),

10

15

20

25

40

45

50

55

60

127

128

 $4.8\,(d,1H),4.86\,(d,1H),5.0\,(br,1H),6.6\text{-}6.9\,(m,3H),7.2\text{-}7.4$ (m, 5H); MS for $C_{23}H_{29}N_3O_4$ m/z 412.2 [M+H].

2H); MS for $C_{23}H_{28}BrN_3O_4$ m/z 490 [M], 491 [M+H], 492 [M+2].

Example 2B2

Example 2B4

Preparation of Compound 17: 1-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-fluorobenzyl)urea

Preparation of Compound 41: 1-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methoxybenzyl)urea

он

¹H NMR (400 MHz, CDCl₃) δ =1.6 (s, 4H), 2.4-2.6 (m, 6H), 3.9 (m, 1H), 4.0-4.1 (m, 2H), 4.13 (s, 4H), 4.7 (d, 1H), 5.4 (d, 1H), 6.6-7.1 (m, 7H); MS for $C_{23}H_{28}FN_3O_4$ m/z 430.2[M+H].

¹H NMR (400 MHz, CDCl₃) δ=1.6 (s, 4H), 2.4-2.6 (m, 6H), 3.7 (s, 3H), 3.9 (m, 1H), 4.1 (d, 2H), 4.2 (s, 4H), 4.7 (d, $1H), 5.2\,(d,1H), 5.5\text{-}5.7\,(br,1H), 6.6\text{-}6.8\,(m,5H), 7.1\,(d,2H);\\$ MS for $\mathrm{C_{24}H_{31}N_{3}O_{5}}$ m/z 442.2 [M+H].

Example 2B3

Example 2B5

Preparation of Compound 40:1-(4-bromobenzyl)-3-(1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1hydroxy-3-pyrrolidin-1-yl)propan-2-yl)urea

Preparation of Compound 80: 14(1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(3-methoxybenzyl)urea

6H), 4.0 (m, 1H), 4.1-4.2 (m, 2H), 4.2 (s, 4H), 4.8 (d, 1H), 5.3 (d, 1H), 5.6-5.8 (br, 1H), 6.8-7.0 (m, 3H), 7.0 (d, 2H), 7.4 (d,

¹H NMR (400 MHz, CDCl₃) δ =1.7 (s, 4H), 2.4-2.6 (m, $^{1}\text{H NMR (400 MHz, CDCl}_{3}) \ \delta = 1.7 \ (s, \ 4\text{H}), \ 2.4-2.8 \ (m, \ _{65} \ 6\text{H}), \ 3.8 \ (s, 3\text{H}), \ 4.0 \ (m, 1\text{H}), \ 4.1-4.2 \ (s, 6\text{H}), \ 4.8 \ (d, 1\text{H}), \ 5.1 \$ (d, 1H), 5.2-5.4 (br, 1H), 6.6-6.8 (m, 6H), 7.2 (dd, 1H); MS for $C_{24}H_{31}N_3O_5 \text{ m/z } 442.2 \text{ [M+H]}.$

15

20

25

35

40

45

60

129

Example 2B6

130 Example 2B8

Preparation of Compound 42: 1-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-methylbenzyl)urea

Preparation of Compound 10:1-((1R,2R)-1-(2,3 $dihydrobenzo[\beta][1,4]dioxin-6-yl)-1-hydroxy-3-(pyr$ rolidin-1-yl)propan-2-yl)-3-((S)-1-phenylethyl urea

он

ΌΗ

¹H NMR (400 MHz, CDCl₃) δ =1.6 (s, 4H), 2.3 (s, 3H), 2.4-2.6 (m, 6H), 4.0 (m, 1H), 4.2 (d, 2H), 4.21 (s, 4H), 4.7 (d, 1H), 5.2 (d, 1H), 5.4-5.6 (br, 1H), 6.7-7.1 (m, 7H); MS (for 30 $C_{24}H_{31}N_3O_4 \text{ m/z } 426.2 \text{ [M+H]}.$

Example 2B7

¹H NMR (400 MHz, CDCl₃) δ =1.4 (d, 3H), 1.6 (s, 4H), $2.2-2.5 \, (m, 4H), 2.5 \, (dd, 1H), 2.6 \, (dd, 1H), 3.9 \, (m, 1H), 4.2 \, (s, 1H), 3.9 \, (m, 1H)$ 4H), 4.5 (m, 1H), 4.8 (d, 1H), 5.0 (d, 1H), 5.1-5.3 (br, 1H), 6.6-6.9 (m, 3H), 7.2-7.4 (m, 5H); MS for $C_{24}H_{31}N_3O_4$ m/z 426.2 [M+H].

Preparation of Compound 43: 1-(4-chlorobenzyl)-3- $((1R,2R)-1-(2,3-dihydrobenzo[\beta][1,4]dioxin-6-yl)-1$ hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)urea

Example 2B9

Preparation of Compound 286: 1-((1R,2R)-1-(2,3dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(®-1-phenylethyl)urea

50 55 он

′он

¹H NMR (400 MHz, CDCl₃) δ =1.7 (s, 4H), 2.5-2.7 (m, $6 \text{H}), 4.0 \ (\text{m}, 1 \text{H}), 4.2 \ (\text{s}, 6 \text{H}), 4.8 \ (\text{d}, 1 \text{H}), 5.2 \ (\text{d}, 1 \text{H}), 5.4-5.5 \\ $ (br, 1H), 6.7-6.9 (m, 3H), 7.1 (d, 2H), 7.3 (d, 2H); MS for C₂₃H₂₈N₃ClO₄ m/z 446 [M+H], 447.5 [M+2].

¹H NMR (400 MHz, CDCl₃) δ =1.3 (d, 3H), 1.7 (s, 4H), (d, 1H), 5.6-5.7 (br, 1H), 6.6 (d, 1H), 6.7 (d, 1H), 6.8 (s, 1H), 7.2-7.4 (m, 5H); MS for $C_{24}H_{31}N_3O_4$ m/z 426.0 [M+H].

15

25

30

45

50

55

60

Preparation of Compound 69: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(naphthalen-2-yl)urea

 $^{1}\rm{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta{=}1.6$ (s, 4H), 2.4-2.8 (m, 6H), 4.1 (s, 5H), 4.8 (s, 1H), 6.0 (d, 1H), 6.7 (s, 2H), 6.9 (s, 20 H), 7.1-7.8 (m, 7H); MS for C $_{26}\rm{H}_{29}\rm{N}_{3}\rm{O}_{4}$ m/z 448.1 [M+H].

Example 2B11

Preparation of Compound 288: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(naphthalen-1-yl)urea

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta=1.6$ (s, 4H), 2.4 (s, 4H), 2.6 (d, 2H), 4.1 (m, 1H), 4.2 (s, 4H), 4.8 (d, 1H), 5.4 (d, 1H), 6.5 (d, 1H), 6.6 (d, 1H), 6.7 (s, 1H), 7.2-7.6 (m, 3H), 7.7 (d, 1H), 7.8 (d, 1H), 8.0 (d, 1H); MS for C $_{26}\mathrm{H}_{29}\mathrm{N}_{3}\mathrm{O}_{4}$ m/z 448.1 [M+H].

Example 2B12

Preparation of Compound 71: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-((S)-1-(naphthalen-1-yl) ethyl)urea

132

 $^{1}H \ NMR \ (400 \ MHz, CDCl_{3}) \ \delta = 1.4 \ (s, 4H), 1.5 \ (d, 3H), 2.3 \\ (s, 4H), 2.4 \ (dd, 1H), 2.6 \ (dd, 1H), 3.9 \ (br, 1H), 4.2 \ (s, 4H), 4.7 \\ (s, 1H), 5.0 \ (d, 1H), 5.3 \ (br, 1H), 5.5 \ (br, 1H), 6.6 \ (m, 3H), \\ 7.4-7.6 \ (m, 4H), 7.7 \ (d, 1H), 7.8 \ (d, 1H), 8.1 \ (d, 1H); MS \ for \\ ^{5} \ C_{28}H_{33}N_{3}O_{4} \ m/z \ 476.2 \ [M+H].$

Example 2B13

Preparation of Compound 70: 1-(biphenyl-4-yl)-3-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)urea

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃) $\delta{=}1.7$ (s, 4H), 2.6-2.8 (m, 6H), 4.1 (br, 1H), 4.2 (s, 4H), 4.9 (br, 1H), 5.9 (d, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.6 (m, 9H); for C $_{28}\mathrm{H}_{31}\mathrm{N}_{3}\mathrm{O}_{4}$ m/z 474.1 [M+H].

Example 2B14

Preparation of Compound 81: $1-((1R,2R)-1-(2,3-dihydrobenzo[\beta][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(trifluoromethyl)phenyl)urea$

 ^{1}H NMR (400 MHz, CDCl₃) $\delta{=}1.7$ (s, 4H), 2.4-2.7 (m, 65 6H), 4.0 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (br, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.3 (d, 2H), 7.5 (d, 2H); MS for $C_{23}H_{26}F_{3}N_{3}O_{4}$ m/z 465.97 [M+H].

10

15

20

25

45

50

133

Example 2B15

rolidin-1-yl)propan-2-yl)-3-(3-(trifluoromethyl)phenyl)urea

Preparation of Compound 68: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyr-

 ^{1}H NMR (400 MHz, CDCl₃) $\delta{=}1.7$ (s, 4H), 2.5-2.9 (m, 30 6H), 4.0 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (br, 1H), 6.8 (s, 2H), 6.9 (s, 1H), 7.2-7.6 (m, 4H); MS for $\rm C_{23}H_{26}F_{3}N_{3}O_{4}$ m/z 466.0 [M+H].

Example 2B16

Preparation of Compound 82: $1-((1R,2R)-1-(2,3-dihydrobenzo[\beta][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(trifluoromethoxy) phenyl)urea$

¹H NMR (400 MHz, CDCl₃) δ =1.7 (s, 4H), 2.4-2.7 (m, 6H), 4.0 (br, 1H), 4.2 (s, 4H), 4.8 (br, 1H), 5.9 (br, 1H), 6.8 (s,

134

2H), 6.9 (s, 1H), 7.0 (d, 2H), 7.2 (d, 2H); MS for $C_{23}H_{26}F_3N_3O_5$ m/z 481.5 [M], 482.5 [M+H].

Example 2B17

Preparation of Compound 133: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(4-(2-methylthiazol-4-yl)phenyl)urea

 $^{35} \quad ^{1}\text{H NMR (400 MHz, CDCl}_{3}) \; \delta = 1.7 \; (\text{s}, \, 4\text{H}), \, 2.4\text{-}2.7 \; (\text{m}, \, 6\text{H}), \, 2.7 \; (\text{s}, \, 3\text{H}), \, 4.1 \; (\text{br}, \, 1\text{H}), \, 4.2 \; (\text{s}, \, 4\text{H}), \, 4.8 \; (\text{br}, \, 1\text{H}), \, 5.9 \; (\text{d}, \, 1\text{H}), \, 6.8 \; (\text{s}, \, 2\text{H}), \, 6.9 \; (\text{s}, \, 1\text{H}), \, 7.2 \; (\text{s}, \, 1\text{H}), \, 7.3 \; (\text{d}, \, 2\text{H}), \, 7.7 \; (\text{d}, \, 2\text{H}); \; \text{MS for C}_{26}\text{H}_{30}\text{N}_{4}\text{O}_{4}\text{S m/z} \; 494.9 \; [\text{M+H}].$

Example 2B18

Preparation of Compound 7: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-dodecylurea

¹H NMR (400 MHz, CDCl₃) δ=0.9 (t, 3H), 1.3 (br, 18H), 1.4 (m, 2H), 1.8 (s, 4H), 2.5-2.7 (m, 6H), 3.1 (q, 2H), 4.0 (m,

5

10

1H), 4.3 (s, 4H), 4.4 (br, 1H), 4.76 (d, 1H), 4.8 (d, 1H), 6.7-6.8 (dd, 2H), 6.9 (s, 1H); MS for $\rm C_{28}H_{47}N_3O_4$ m/z 489.7 [M+H], 490.9 [M+2].

Example 2B19

Preparation of Compound 287: 1-((1R,2R)-1-(2,3-dihydrobenzo[β][1,4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)-3-(2-(thiophen-2-yl)ethyl) urea

 ^{1}H NMR (400 MHz, CDCl₃) $\delta{=}1.7$ (s, 4H), 2.5-2.7 (m, 6H), 3.0 (t, 2H), 3.8 (q, 2H), 4.0 (m, 1H), 4.2 (s, 4H), 4.8 (d, 2H), 4.9 (d, 1H), 6.7-6.8 (m, 3H), 6.9 (d, 1H), 6.9 (dd-1H), 7.1 (d, 1H); MS for C $_{22}H_{29}N_{3}O4S$ m/z 432.1 [M+H].

Example 2B20

Preparation of 1-((1R,2R)-1-(4-(4-fluorobutoxy) phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl) propan-2-yl)-3-(4-methoxybenzyl)urea 2,2,2-trifluoroacetate

 ^{1}H NMR (400 MHz, CD₃OD) $\delta{=}1.8\text{-}2.2$ (m, 6H), 3.2-3.3 (dd, 2H), 3.4-3.7 (m, 3H), 3.8 (s, 3H), 3.82-4.1 (m, 4H), 4.3

136

(dd, 2H), 4.4 (dd, 1H), 4.5 (dd, 2H), 4.8 (dd, 1H), 6.8 (d, 2H), 6.9 (d, 2H), 7 (m, 2H), 7.3 (d, 2H); MS for $\rm C_{26}H_{36}FN_3O_5$ m/z 491 [M+H].

Example 2B21

Preparation of 1-(4-chlorobenzyl)-3-((1R,2R)-1-(4-(4-fluorobutoxy)phenyl)-1-hydroxy-3-((R)-3-hydroxypyrrolidin-1-yl)propan-2-yl)urea

 ^{1}H NMR (400 MHz, CDCl $_{3}$) δ =1.6-1.8 (m, 3H), 1.8-2 (m, 5H), 2-2.2 (m, 2H), 2.2-2.3 (m, 2H), 2.8-2.4 (m, 5H), 2.9 (m, 1H), 3.9-4.0 (m, 3), 4.1-4.4 (m, 3H), 4.5 (t, 1H), 4.6-4.7 (m, 1H), 4.75 (d, 1H), 6.8 (d, 2H), 7.1 (d, 2H), 7.15-7.3 (m, 4H); MS for C $_{25}H_{33}CIFN_{3}O_{4}$ 494 [M+H].

Example 3

GM3 Elisa Assay

B16-FO cells from ATCC (American Tissue Culture Collection) were grown in DMEM media (ATCC) with 10% Fetal Bovine Serum (Hyclone) and Pen/Step/Glutamine (Biowhittaker). 4000 cells per well were plated on collagen coated plates (BD) and allowed to attach for 6 hours in an 40 incubator (37 degrees, 5% CO2). After 6 hours the compounds and controls were added to the wells, the plates mixed and returned to the incubator for 2 days. Day of assay the cells were fixed for 20 minutes with 1% formaldehyde and then washed with Tris Buffered Saline (TBS) 3 times, 150 µl of 45 TBS was left in the wells and 50 μl of goat serum (Invitrogen) was added, the plates mixed and incubated for 1 hour at room temperature. The plates were flicked and the cells incubated with the monoclonal Antibody to GM3 (NeuAc) (Cosmo) for 45 minutes as room temperature. The plates were then 50 washed 3 times with TBS, leaving 150 μl of TBS in the wells and Peroxidase AffinPure F(ab')2 frag Gt Anti-mouse IgM, µ Chain Specific (Jackson Immuno Research) was added in 50 μl, the plates mixed and incubated for 45 minutes at room temperature. The plates were washed 3 times with TBS, flicked and blotted and 100 µl of Quantablu (Pierce) was added to the wells and incubated for 1 hour then read on a Fluorometer at Ex 325 and Em 420. The data was then analyzed using standard programs.

The results of the GM3 Elisa assay are summarized in Tables 1 and 2. In Tables 1 and 2, IC50 values are indicated as "A," "B," C," "D," and "E" for those of less than or equal to 0.1 µm; those of greater than 0.1 µm, and less than or equal to 1 µm; those of greater than 1 µm, and less than or equal to 3 µm; those of greater than 3 µm, and less than or equal to 10 µm; those of greater than 10 µm, respectively. As shown in Tables 1, 2 and 3, numerous compounds of the invention were shown to be inhibitors of GM3.

TABLE 1

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
z O O O O O O O O O O O O O O O O O O O	1	В
z	2	С
Z N H	3	С
z O	4	В
	5	В
z N	6	В
$z \xrightarrow{0}_{N} $	7	A
z O	8	В
z O	9	В
z N N	10	В

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mear
z s s	11	A
z O	12	В
Z O	13	В
z $\stackrel{\circ}{\downarrow}_{N}$	14	В
$Z \longrightarrow N$	15	В
$z \xrightarrow{N} N$	16	D
z N F	17	A
z O	18	В
z	19	В

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound 1	C50_uM_Mean
z o	20	В
Z	21	A
z	22	С
Z O	23	A
Z O O O	24	В
Z OH	25	В
Z OH	26	В
Z O O	27	A
Z O	28	A

TABLE 1-continued		
IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
	29	A
z O	30	В
z	31	В
z s	32	A
	33	Α
Z	34	С
Z	35	С
Z O	36	В
Z O S	37	В
z S	38	В

TABLE 1-continued

IABLE 1-continued IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mear
Z S	39	A
Z N Br	40	A
z N	41	A
z N	42	A
Z N CI	43	A
$Z \xrightarrow{O} N$ H F	44	В
z N	45	В
z N F	46	В
	47	В

TABLE 1-continued

IABLE 1-continued IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mear
Z O CI	48	A
Z C S	49	A
Z O S N	50	В
Z F F	51	В
	52	В
Z O F	53	
Z O O O O O O O O O O O O O O O O O O O	54	A
Z O CI	55	A

TABLE 1-continued

TABLE 1-continued		
IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
Z O CI	56	A
Z	57	A
z O F	58	В
	59	A
Z O F	60	A
Z O O O O O O O O O O O O O O O O O O O	61	A
Z F	62	В
Z O	63	Α
	64	A
Z O CI	65	A

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mea
Z O	66	A
Z O F	67	A
$Z \xrightarrow{H} N$ $F \xrightarrow{F} F$	68	В
$z \stackrel{O}{\underset{H}{\bigvee}} N$	69	В
Z N	70	A
	71	В
z O	72	В
Z O CI	73	A

TABLE 1-continued

TABLE 1-continued		
IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
z o	74	В
z 0 0	75	В
z \bigcirc \bigcirc \bigcirc \bigcirc	76	В
z 0 0	77	A
	78 79	В
CI		A
Z N N N N N N N N N N N N N N N N N N N	80	В
Z H N F F	81	В
Z K	82	A
z O CI	83	A

TABLE 1-continued

TABLE 1-continued		
IC 50 Values from GM3 Elisa Assay Z—R*	Compound IC	C50_uM_Mean
	84	С
Z G F F	85	A
Z O	86	A
Z O CI	87	A
Z O	88	В
Z O	89	В
Z $N-O$	90	В
Z S S	91	В
z	92	A

TABLE 1-continued

TABLE 1-continued		
IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
z F	93	A
Z Z	94	С
z	95	A
z F F	96	A
	97	В
z N O O	98	D
z	99	В
Z	100	A
$O = \bigvee_{Z}^{N}$		A
z	102	С

TABLE 1-continued

IABLE 1-continued		
IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
Z F F	103	A
z N	104	В
Z N	105	В
Z V	106	В
z	107	D
z N	108	В
z O CI	109	A
Z N N CI	110	A

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound IC	50_uM_Me
Z Q	111	В
	112	В
z O	113	В
Z O	114	В
z O	115	A
Z CI	116	В
Z H S H F F F	117	В

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound	IC50_uM_Mean
Z H H O	118	В
Z F O F	119	A
N O Z	120	В
H Z Z	121	D
Z N	122	D
	123	С

TABLE 1-continued

TABLE 1-continued		
IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mea
	124	С
Z	125	В
	126	D
z O	127	В
	128	С
	129	В
	130	C

TABLE 1-continued

IABLE 1-continued		
IC 50 Values from GM3 Elisa Assay		
$Z-R^*$	Compound IC	A
	132	D
Z H N N N SH	133	D
$O = \bigvee_{Z}^{H} \bigvee_{S}^{N} \bigvee_{S}^{N}$	134	С
$z \xrightarrow{H}_{N}$	135	С
z O	136	A
z Å	137	A

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
z F F	138	A
z F F	139	A
Z O	140	A
z	141	A
Z O	142	A
z	143	A
z	144	A

TABLE 1-continued

IABLE 1-continued		
IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound IO	C50_uM_Mea
Z H N CI	145	В
	146	В
Z H H N S H	147	В
z	148	A
Z H H N S H	149	В
- N N Z	150	С
z	151	В

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay	-	
Z—R*	Compound IO	C50_uM_Mean
z O	152	A
Z O	153	В
z	154	В
Z O	155	В
z O	156	A
z O	157	A
z O	158	A
z CI	159	A

TABLE 1-continued

IABLE 1-continued IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
	160	В
z O	161	В
z	162	A
Z O O O O	163	A
Z O	164	A
	165	A
Z O O O O O O O O O O O O O O O O O O O	166	A
z	167	A
Z	168	A

TABLE 1-continued

TABLE 1-continued		
IC 50 Values from GM3 Elisa Assay		
$Z-R^*$	Compound I	C50_uM_Mean A
Z O O	170	В
Z OH	171	С
Z O	172	В
	173 174	A A
	175	A
z O		
$Z \xrightarrow{O} F$ $F \xrightarrow{F}$	176	A
Z O F	177	В

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mear
z O	178	A
z	179	A
z O	180	В
z	181	A
z	182	В
z O	183	A
Z O	184	
	185	В
Z O F F F	186	A

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
Z O O O O O O O O O O O O O O O O O O O	187	В
Z O O	188	В
Z O O O O O O O O O O O O O O O O O O O	189	В
z	190	A
z O O O O O O O O O O O O O O O O O O O	191	A
Z O O O O O O O O O O O O O O O O O O O	192	В
	193	В
Z O O O O O O O O O O O O O O O O O O O	194	В
	195	В

TABLE 1-continued

IABLE 1-continued IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
Z O O O O O O O O O O O O O O O O O O O	196	С
z O O O O O O O O O O O O O O O O O O O	197	A
z o o o o o o o o o o o o o o o o o o o	198	В
z O O O O O O O O O O O O O O O O O O O	199	A
	200	В
z z z z z z z z	201	C B
	203	A
	204	В

TABLE 1-continued

TABLE 1-continued		
IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
z	205	A
o d z	206	В
Z	207	A
z O	208	В
z	209	A
z O	210	В
	211	В
z	212	D
O Z	213	В
z O	214	D

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mear
Z O O O O O O O O O O O O O O O O O O O	215	В
Z O O O O O O O O O O O O O O O O O O O	216	A
z O	217	A
z N N	218	D
z	219	D
z O	220	В
z	221	A
z	222	A
z o	223	A
$z \longrightarrow 0$	224	В

TABLE 1-continued

IABLE 1-continued		
IC 50 Values from GM3 Elisa Assay Z—R*	Compound	IC50_uM_Mea
$z \stackrel{\circ}{\longrightarrow} 0$	225	A
z	226	D
z	227	С
z	228	В
z	229	Е
Z	230	В
z	231	A
z	232	С
	233	С

TABLE 1-continued

IABLE 1-continued		
IC 50 Values from GM3 Elisa Assay Z—R*	Compound	IC50_uM_Mear
	234	В
Z O CI O O	235	В
$Z \xrightarrow{N} H$	236	A
z H	237	A
z	238	A
$Z \xrightarrow{Q} F$ $Z \xrightarrow{H} F$ $Z \xrightarrow{F} F$	239	D
Z HN O	240	С
z H H H	241	A
Z OH	291	C
z	292	С

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound	IC50_uM_Mean
Z OH	293	В
z F F	294	В
z	295	A
z OH	296	В
Z	297	С
z $\overset{\circ}{\smile}$ $\overset{\circ}{\smile}$	298	В
	299	A
z	300	A
	301	A
z N N	302	Α
	303	A
z o o	304	A

TABLE 1-continued

IC 50 Values from GM3 Elisa Assay		
Z—R*	Compound I	C50_uM_Mean
Z	305	A
z $^{\circ}$ $^{\circ}$	306	В
z 0 0	307	A
	308	A

$$Z-R^* = \bigvee_{\substack{N \\ HN \\ R^*}} \bigcap_{R} OH$$

TABLE 2

IABLE 2		
IC 50 Values from GM3 Elisa Assay		
Structure	Compound	IC50_uM_Mean
N N N N N N N N N N N N N N N N N N N	242	D

197		198
TABLE 2-continued		
IC 50 Values from GM3 Elisa Assay	_	
Structure		C50_uM_Mean
	243	A
HOM, N	244	A
CI HO NO	245	D
OH NNOOOO	246	С

TABLE 2-continued

IC 50 Values from GM3 Elisa Assay		
	Structure	Compound IC50_uM_Mean

TABLE 2-continued

IC 50 Values from GM3 Elisa Assay

Structure

Compound IC50_uM_Mean

250 B

TABLE 2-continued

IC 50 Values from GM3 Elisa Assay	
Structure	Compound IC50_uM_Mean
Structure CI N N N N N N N N N N N N N	Compound IC50_uM_Mean 253 B

IC 50 Values from GM3 Elisa Assa	IC	50 Values	from	GM3	Elisa Assay	,
----------------------------------	----	-----------	------	-----	-------------	---

TABLE 2-continued

TABLE 2-continued		
IC 50 Values from GM3 Elisa Assay		
Structure		C50_uM_Mean
F F F	258	D
OH NOH	259	A
HN _m , N	260	A
O HO HO	261	В

200		210
TABLE 2-continued		
IC 50 Values from GM3 Elisa Assay		
Structure	Compound I	C50_uM_Me
O HINMIN N	262	A
HN _m , N	263	В
O N O N	264	A

TABLE 2-continued

TABLE 2-continued	
IC 50 Values from GM3 Elisa Ass.	ay
Structure	Compound IC50_uM_Mean
QH	265 A

$$\begin{array}{c} O \\ O \\ O \\ O \\ N \end{array}$$

$$\begin{array}{c|c} O & O & O & O \\ \hline O & O & O \\ \hline O & O & O & O \\ \hline O & O & O & O \\ \hline O & O & O & O \\ \hline O & O &$$

TABLE 2-continued

TABLE 2-continued		
IC 50 Values from GM3 Elisa Assay		
Structure		50_uM_Mean
	269	A
O HN/m, N		
	270	A
O CONTROLL O	271	A
O HN _m , N		

TABLE 2-continued

IC 50 Values from GM3 Elisa Assay	
Structure	Compound IC50_uM_Mean

TABLE 2-continued		
IC 50 Values from GM3 Elisa Assay		
Structure	Compound 1	IC50_uM_Mean
	275	A

TABLE 2-continued		
IC 50 Values from GM3 Elisa Assay		
Structure	Compound IC5	0_uM_M
ON NH OH	278	Е
NH HO	279	С
OH ON NH OO NH OO	282	С

TABLE 2-continued

TABLE 2-continued IC 50 Values from GM3 Elisa Assay		
Structure	Compound I	C50_uM_Mean
O N OH	283	A
	284	A
OH NH O	285	A
O HN HN OH	286	D

TABLE 2-continued		22 4
IC 50 Values from GM3 Elisa Assay		
Structure	Compound I	C50_uM_Me
N HN O S	287	С
OH OH OOH	289	В
OH N NH OH H	309	A

TABLE 2-continued

TC	50	Values	from	GM3	Elisa Assav

TABLE 2-continued

IC 50 Values from GM3 Elisa Assay		
Structure	Compound IC50_uM_Mea	ın
	314 C	

229 TABLE 2-continued	:	230
IC 50 Values from GM3 Elisa Assay		
Structure	Compound IO	C50_uM_Mean
O HOM NH	317	В
OH NH OH OH	318	В
OH NH NH O	319	В

TABLE 2-continued

IC	50	Values	from	GM3	Elisa Assav
10	20	vanues	HOIII	CIVIO	Liisa Assay

Structure	Compound IC50_uM_Mean
OH N NH NH	320 A

TABLE 3

TABLE 3				
IC 50 Values				
Structure	IC50_uM_Mean	Compound		
O H O CH_3 CH_3	В	340		
O H O CH ₃	A	341		
O CH ₃	В	342		

TABLE 3-continued	250	
IC 50 Values		
Structure	IC50_uM_Mean	Compound
O H O CH_3 H_3C	В	343
O H O CH3	A	344
O H O CH ₃	A	345

TABLE 3-continued				
IC 50 Values				
Structure	IC50_uM_Mean	Compound		
H_3C — O	В	346		
O H CH ₃ F F F	В	347		
O F	В	348		

$$H_{3C}$$

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
O H CH ₃	В	349
$_{ m H_{3}C}$		
N H CH3	A	350
O CH ₃	В	351
O N H CH_3 O H_3C		

241 TABLE 3-continued	242	
IC 50 Values		
Structure	IC50_uM_Mean	Compound
H O CH ₃ O CH ₃ O CH ₃	D	352
$H_{3}C$	В	353
$\begin{array}{c} OH \\ \hline \\ O \\ \hline \\ F \\ \end{array}$	В	354

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH NH OCH3 HO F F	С	355
$\begin{array}{c} OH \\ O \\ \hline \\ NH \\ \hline \\ O \\ \hline \\ F \\ F \\ \hline \\ F \\ \\ F \\ \\ \end{array}$	С	356
OH OH OH OH OH OH OH OH OH OH	В	357

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH NH NH SCI	A	358
OH NH O CH ₃	В	359
OH H H ₃ C O F F	В	360

TABLE 3-continued	248	
IC 50 Values		
Structure	IC50_uM_Mean	Compoun
OH N HN H H H ₃ C OCH ₃ HO F F	D	361
$\begin{array}{c} OH \\ \hline \\ N \\ \hline \\ HN \\ H \\ H_3C \\ \end{array}$	D	362
OH N HN H H ₃ C	В	363

TABLE 3-continued

TABLE 3-continued IC 50 Values		
Structure	IC50_uM_Mean	Compound
	A	364
H ₃ C—O' OH F F F	A	365
H_3C-O O O O O O O O	A	366

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH N N N N N N N N N N N N N N N N N N N	A	367
H ₃ C—O	A	368
HOUND CH ₃		
$F \longrightarrow \bigcup_{\text{OCH}_3}^{\text{OH}} \bigcup_{\text{NH}}^{\text{OH}} \bigcup_{\text{CH}_3}^{\text{OH}} \bigcup$	A	369
$\bigcap_{\mathrm{CH}_3}^{\mathrm{O}} F$		

Structure IC50_uM_Mean	Compound
$OH \\ O \\$	370

IC 50 Values		
Structure	IC50_uM_Mean	Compound
HOIM HO F F	A	372

$$\begin{array}{c} OH \\ \hline \\ NH \\ \hline \\ O \end{array}$$

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH NH OH NH OCH ₃	A	374
$O = \bigvee_{H_3C} \bigcap_{F} F$		
HOWN O N N N N N N N	В	375
OH NH OH H ₃ C CH ₃	A	376
H ₃ C—O′		

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH NH NH OH H ₃ C CH ₃	A	377
H_3C' H	A	378
OH OH OH OH OH OH OH OH OH OH OH OH OH	В	379

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
H_3C	A	380
OH HN HN CI	C	381
OH HIN O CI	В	382

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH NH OH CI	В	383
OH H _N O	В	384
OH HN HN CI	C	385

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH HN OCH ₃ CH ₃	В	386
$H_3C \longrightarrow O$ OH W CH ₃ CH ₃	В	387
OH $H_{3}C$ CH_{3} CH_{3} CH_{3}	A	388
$_{ m H_3C}$		

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH CH3 CH3 F F	A	389
OH N HN OCH ₃	A	390
H ₃ C — O OH CH ₃ CH ₃	В	391

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH N N N N N N N N N N N N N	D	392
OH NH O	D	393
H ₃ C OH N N N N N N N N N N N N N	c	394

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH NH OH NH OH NH OH NH	D	395
OH N NH NH	D	396
OH N N N N N N N N N N N	D	397

IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH OF F	D	398

$$O = \begin{pmatrix} O & F & D & 400 \\ \hline & & & & \\ O & & & \\ \hline & & & \\ O & & & \\ \hline & & & \\ CH_3 & & & \\ \end{pmatrix}$$

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH NH OH F F	В	401
$_{ m H_{3}C}$		
$O = \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} \bigcup_{j=1}^{N} \bigcup_{i=1}^{N} \bigcup_{j=1}^{N} $	D	402
OH OH N N N N N N N N N N N N N	C	403
H ₃ C — O		

IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH OH	D	404

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH HIN O O	С	407
H ₃ C	С	408
O F F		
H ₃ C OH HN OF F F	В	409
H ₃ C — O		

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH HN HN F F F	D	410
OH HN HN H3C	D	411
OH N NH	A	412

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH NH OH OH HO FF	A	413
H_3C-O OH OH OH HO F F	В	414
$\begin{array}{c} OH \\ HN \\ O \\ H_{3}C \end{array}$	В	415

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH HN O HO F F CH ₃	A	416
H ₃ C OH HN OCH HO F F F	A	417
H_3C-O	A	418

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH NH OH NH OF HO F F	A	419
$H_3C \longrightarrow O$ F $H_3C \longrightarrow O$ H	A	420
OH NH OH NH OH HO F F	A	421

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH OH OH OH OH OF F	D	422
$H_3C \longrightarrow O$ H_3C	C	423
H_3C OH OH OH OH OH OH OH OH OH O	D	424

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH OH OH OH OF F	D	425
H₃C —Ó OH	D	426
O CH ₃		
H ₃ C—O F F		
OH OH OH OO F OO F HO F F	D	427

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH OH OH	D	428
H ₃ C—O		
OH OH OH OH OH OH OH OH	D	429
OH NH OOH NH OO CH ₃	A	430

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
O N O N O O O O O O O O O O O O O O O O	A	431
H ₃ C — O OH N OH F F F	A	432
H ₃ C—O	A	433

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
O O O O O O O O O O	A	434
OH NH ON NH O NH O F	A	435
$H_{3}C$	A	436

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
$_{\rm H_3C-O}^{\rm OH}$	A	437
OH NH OH H_3C CH_3 H_3C OH OH H_3C OH OH OH OH OH OH OH OH	A	438
ОН NH ОН ОН ОН ОН	В	439

IC	50	Val	lues

Structure	IC50_uM_Mean	Compound
OH OH	A	440
F F F F F F F F F F		
H ₃ C — O		

TABLE 3-continued			
IC 50 Values			
Structure	IC50_uM_Mean	Compound	
OH HN OCH3	A	442	

TABLE 3-continued

TABLE 3-continued			
IC 50 Values			
Structure	IC50_uM_Mean	Compound	
F CH ₃	В	444	
OH UH ₃ C	В	445	
$_{\text{CH}_3}$			
F CH ₃	A	446	
CI			

TABLE 3-continued

TABLE 5-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
HOIIIII NH H3C CH3	A	447
$H_3C \longrightarrow O$ OH	В	448
H ₃ C OH OOH	A	449
O—————————————————————————————————————		

TIBEL 5 Commune		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH NH O CH ₃	A	450

TABLE 3-continued

TABLE 3-continued				
IC 50 Values				
Structure	IC50_uM_Mean	Compound		
F OH	В	452		
H ₃ C—O F F F CH ₃ CH ₃	A	453		
O—CH ₃ O—CH ₃ O—CH ₃	A	454		

TABLE 5-continued			
IC 50 Values			
Structure	IC50_uM_Mean	Compound	
HOMMING THE STATE OF THE STATE	A	455	

HOIMING CH₃

$$CH_3$$

$$CH_3$$

$$CH_3$$

TABLE 3-continued

IC 50 Values				
Structure	IC50_uM_Mean	Compound		
HOIIIIII OH OCH3	A	457		

TABLE 3-continued			
IC 50 Values			
Structure		IC50_uM_Mean	Compound
H ₃ C NH	Chiral CH ₃	D	459

Structure IC50_uM_Mean Co	,
	npound
CH ₃ C N _{NH} NH O NH O H ₂ C	461

$$\begin{array}{c} CH_3 \quad Chiral \\ \\ OH \\$$

TABLE 3-continued

IABLE 3-continued IC 50 Values			
Structure		IC50_uM_Mean	Compound
CH ₃	Chiral =O	В	463
CH ₃	Chiral	D	464
H_3C CH_3 NH O NH O	Chiral	В	465

IABLE 5-continued			
IC 50 Values			
Structure	IC50_uM_Mean	Compound	
H_3C	D	466	

$$\begin{array}{c} CH_3 & Chiral \\ \hline \\ O & \\ \hline \\$$

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
$\begin{array}{c} CH_3 \\ O \\ \\ O \\ \\ CH_3 \end{array}$	В	469
$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{O} \\ \end{array}$	В	470
N H O CH ₃	С	471
HN N	В	472

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
HO HO	A	473
F O HN N O	В	474
F HN HO	A	475

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
F	В	476
HO HO O		
O H_3 C H_3 C	D	477
$\begin{array}{c} OH \\ \hline \\ NH \\ \hline \\ OH \\ \hline \\ CH_3 \\ \end{array}$	В	478

TABLE 3-continued

IC 50 Values		
Structure	IC50_uM_Mean	Compoun
$O = \bigcup_{K \in \mathcal{H}_3}^{OH} $	A	479
O—CH ₃ N H N H N O H N O O H N O O H N O O H N O O O H N O O O H N O O O O O O O O O O O O	C	480
H ₃ C	D	481
$\bigcap_{H} \bigcap_{F}^{F}$		

333	334	
TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
HO NH F	D	482
$H \longrightarrow O \longrightarrow H$ $O \longrightarrow H$ $O \longrightarrow F$ F	D	483
$ \begin{array}{c} O \\ O \\ O \\ O \\ O \\ O \end{array} $ $ \begin{array}{c} H \\ F \\ F \end{array} $	C	484

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
	D	485

IC 50 Values		
Structure	IC50_uM_Mean	Compound
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	С	488

$$\bigcap_{O} \bigoplus_{H} \bigoplus_{F} \bigoplus_{F} \bigoplus_{O} \bigoplus_{CH_3}$$

TABLE 3-continued		
IC 50 Values Structure	IC50_uM_Mean	Compound
O H ₃ C	С	491
H O I I I I I I I I I I I I I I I I I I	D	492
N S CI	c	493

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
H_{3C}	В	494
HOMM. H3C—O H3C—O	A	495
HOIIIIII F	A	496

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
HOIM N	Α	497
$O = \bigcup_{H_3C}$		
HOIIIIII P	A	498
F F OH H_3C		
HO _{M,,} OH N N F	A	499
$_{ m CH_3}$		

TABLE 3-continued

TABLE 3-continued		
IC 50 Values Structure	IC50_uM_Mean	Compound
HO _{Mar.} N W N N N N N N N N N N N	A	500
HOMM. N H3C H3C H3C	A	501
$HO_{M_{N_{1}}}$ O $H_{3}C$ O $H_{3}C$	A	502

IC 50 Values		
Structure	IC50_uM_Mean	Compound
HO _{Ma.}	A	503

TABLE 3-continued

TABLE 5-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
H ₃ C Chiral	D	506

TABLE 3-continued

TABLE 3	-continued		
IC 50 Values			
Structure		IC50_uM_Mean	Compound
CH ₃ O O O N H H O O O O O O O	Chiral HuF	В	509
H ₃ C	Chiral F OH	D	510
CH ₃	Chiral H	D	511

TABLE 3-continued

TABLE 3-	continued		
IC 50	Values		
Structure		IC50_uM_Mean	Compound
H ₃ C	Chiral HuOH	С	512
CH ₃	Chiral	D	513
O O N N OH	HnOH		
CH ₃	Chiral H OH	В	514

TABLE 3-continued

TABLE 3-continued			
IC 50 Values			
Structure		IC50_uM_Mean	Compound
H ₃ C N H H H H H H H H H H H H H H H H H H	Chiral DH	A	515
CH ₃		В	516
H ₃ C		В	517
HN HH N TOO			

TABLE 3-conti	inued		
IC 50 Values	:		
Structure		IC50_uM_Mean	Compound
O—CH ₃	Chiral Chiral	В	518
HT HT	Chiral	D	519
CH ₃ O O N N N H H H H O O O O O			
O N	Chiral CH_3 CH_3	С	520
H H H			

TABLE 3-continued

TABLE 3-conti	nued		
IC 50 Values			
Structure		IC50_uM_Mean	Compound
H ₃ C N H H H	Chiral CH ₃ CH ₃	D	521
CH ₃ O N H W H O H O O	Chiral	A	522
HIM HO	Chiral	В	523

TABLE 3-continued	302	
IC 50 Values		
Structure	IC50_uM_Mean	Compound
N H W H	В	524
O—CH ₃ Chiral	A	525
Chiral O HO HO O HO	В	526

TABLE 3-continued

IC 50 Values			
Structure		IC50_uM_Mean	Compound
H ₃ C	Chiral	С	527

TABLE 3-continued

TABLE 3-con	tinued		
IC 50 Value	es		
Structure		IC50_uM_Mean	Compound
H CH3	Chiral	D	530
O—CH ₃	Chiral H F	A	531
O—CH ₃	Chiral HOH	A	532

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
H Chiral O CH ₃ H O CH ₃	В	533
O—CH ₃ Chiral H O O	D	534
H Chiral CH ₃ CH ₃	D	535
H ₃ C	D	536

TABLE 3-continued

TABLE 3-cc	ontinued		
IC 50 Val	lues		
Structure		IC50_uM_Mean	Compound
O CH ₃	² 2	A	537
CH ₃ C O N H O N H O N H O N O N O N O N O N O	Chiral	D	538
O—CH ₃ H ₃ C		D	539

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
H ₃ C Chiral	D	540
Chiral O—CH ₃	D	541

TABLE 3-continued

TABLE 3	-continued			
IC 50 Values				
Structure		IC50_uM_Mean	Compound	
CH ₃	Chiral	D	543	
H ₃ C H ₀	Chiral	В	544	
H ₃ C H ₀ H ₀ N ₀	Chiral	В	545	

TABLE 3-c	continued		
IC 50 Values			
Structure		IC50_uM_Mean	Compound
CH ₃ NH O HO HO	Chiral	D	546
CH ₃	Chiral	A	547
O CH_3 H_3C H_3	Chiral	C	548

10.	50	V/a	lues

Structure	IC50_uM_Mean	Compound
CH ₃ Chiral	D	549

TABLE 3-continued

TABLE 3-continued				
IC 50 Values				
Structure		IC50_uM_Mean	Compound	
O—CH ₃	Chiral	С	552	
N H ₃ C	CH ₃			
H ₃ C — H ₂	Chiral CH ₃ CN OH	D	553	
	Chiral NOH	D	554	

TABLE 3-continued

	TABLE 3-continued		
	IC 50 Values		
	Structure	IC50_uM_Mean	Compound
HON	Chiral	В	555
	H ₃ C — O		
Chiral HO	CIH	D	556
	Chiral O N H O O O O O O O O O O O O	D	557

TABLE 3-continued

TABLE 3-	continued		
IC 50 Values			
Structure		IC50_uM_Mean	Compound
HO N O O O O O O O O O O O O O O O O O O	Chiral	C	558
	Chiral NOH	В	559
O NH	Chiral	В	560

TABLE 3-continued					
IC 50 Values					
Structure	IC50_uM_Mean	Compound			
Chiral N N N N N N N N N N N N N	D	561			
Chiral HO N HO O S O S O	В	562			
H ₃ C Chiral	D	563			

TABLE 3-continued

TABLE 3-c	ontinued		
IC 50 Values			
Structure		IC50_uM_Mean	Compound
$H_{3}C-O$	Chiral	В	564
F O N N N N	Chiral	A	565
HO N O O O	Chiral	A	566

TABLE 3-continued

TABLE 3-co	ontinued			
IC 50 Values				
Structure		IC50_uM_Mean	Compound	
HO N O	Chiral	В	567	
F O O O O O O O O O O O O O O O O O O O	Chiral	В	568	
O H ₃ C	N	D	569	

TABLE 3	-continued	3)2	
IC 50	Values		
Structure		IC50_uM_Mean	Compound
N CH ₃ N N N N N N N N N N N N N N N N N N N	Chiral O F	D	570
H ₃ C	Chiral H ₃ C N N N OH	D	571
	Chiral	В	572
HOWER	s=0		

TABLE 3-continued

TABLE 3-cont	inued		
IC 50 Values			
Structure		IC50_uM_Mean	Compound
HO N N N N N N N N N N N N N N N N N N N	Chiral	В	573
HOur. N	Chiral	В	574
HOW. HOW. I	Chiral	В	575

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
Chiral OH N OH	В	576
Chiral	В	577
O S O H OH OH	A	578
O S O O O O O O O O O O O O O O O O O O		

TABLE 3-continued

TABLE 3-continued			
IC 50 Values			
Structure	IC50_uM_Mean	Compound	
O Chiral N OCH	D	579	
O Chiral O N N N N N N N N N N N N N N N N N N	D	580	
Chiral O N N H O O O O O O O O O O O O	В	581	
Chiral N N N N N N N N N N N N N	D	582	

TABLE 3-continued

TABLE 3-continued			
IC 50 Values			
Structure		IC50_uM_Mean	Compound
O—CH ₃	Chiral H ₃ C	D	583
HOW.	Chiral CH ₃	В	584
H ₃ C OH	Chiral	В	585

PADE 5-continued			
IC 50 Values			
Structure		IC50_uM_Mean	Compound
H ₃ C — O	Chiral	A	586

OH Chiral B 587

$$HO$$
 HO
 H_3 C

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
H_3C NH O CH_3	D	588
$_{\mathrm{CH_{3}}}^{\mathrm{N}}$	С	589
Chiral	D	590

IC 50 Values		
Structure	IC50_uM_Mean	Compound
CH ₃ Chiral	D	591
H_3C — O	A	592
Chiral OH OH OH OH OH OH		
CH ₃ Chiral OH N OH N OH	В	593

TABLE 5 Continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
H ₃ C Chiral	С	594

$$H_3C$$
 O Chiral D 596 H_4 CH_3 H_4 CH_3 CH_3

TABLE 3-continued			
IC 50 Values			
Structure	IC50_uM_Mean	Compound	
CH ₃ Chiral	D	597	
CH ₃ H _m HN O CH ₃ CH ₃ CH ₃ CH ₃	D	598	
CH ₃ Chiral	c	599	

TADI	F 2 1	712	
	E 3-continued		
	C 50 Values		
Structure		IC50_uM_Mean	Compound
O—CH ₃	Chiral	С	600
	OH OH		
CH ₃	Chiral OHmOH	D	601
H ₃ C NM NH	CH ₃ OH	D	602

TABLE 3-co	ontinued		
IC 50 Values			
Structure		IC50_uM_Mean	Compound
O—CH ₃	Chiral	В	603
O NH	N N N N N N N N N N N N N N N N N N N		
H ₃ C H ₃ C	Chiral	D	604
H ₃ C HO	N CH ₃	D	605

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
O HO CH ₃	D	606

$$H_3C$$

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
HO _{Mm} , NH	В	609
H ₃ C O		
CH ₃ Chiral	D	610
CH ₃ Chiral N N N O N N O N O N O N O N O N O N O	D	611

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
H ₃ C HO _{M_M} NH	D	612
H ₃ C M OH OH NH O	D	613
F O N Chiral	D	614

TABLE 3-continued

IC 50 Values			
Structure	IC50_uM_Mean	Compound	
F N N N N N N N N N N N N N N N N N N N	В	615	

TABLE 3-continued

TABLE 3-0	continued		
IC 50 V	alues		
Structure		IC50_uM_Mean	Compound
O—CH ₃	Chiral	D	618
NH NH	F FOR		
ON NH	Chiral	C	619
F F O O	Chiral	В	620
	NOMIOH		

TABLE 3-continued

TABLE 3-c	continued		
IC 50 Values			
Structure		IC50_uM_Mean	Compound
F F F F F F F F F F F F F F F F F F F	Chiral	C	621
CH ₃	Chiral	D	622
N N N N N N N N N N N N N N N N N N N)		
H ₃ C O	F Chiral F MOH	D	623
F O N N N N N N N N N N N N N N N N N N	Chiral	D	624

IC 50 Values			
Structure	IC50_uM_Mean	Compound	
F HO _M , NH	D	625	
$_{ m H_{3}C}$			

TABLE 3-con	ntinued		
IC 50 Values			
Structure		IC50_uM_Mean	Compound
F F F OH NH OH NH	Chiral	D	627
O N N N N N N N N N N N N N N N N N N N	Chiral I	A	628
CH ₃	, , , , OH	В	629

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
F Chiral O NH HO	В	630
O NH O O	D	631
O — NH O	D	632

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH OH NOH	В	633
F Chiral	В	634
N Chiral Chiral F	D	635
O M H N O	D	636

TABLE 3-continued			
IC 50 Values			
Structure	IC50_uM_Mean	Compound	
HO Chiral NH O	В	637	

TABLE 3-continued

TO	50	170	lues
10.	. 307	va.	mes

Structure	IC50_uM_Mean	Compound
Chiral F HO F F	В	640

TABLE 3-continued

T	ABLE 3-continued		
	IC 50 Values		
Structur	e	IC50_uM_Mean	Compound
	Chiral	С	643
	Chiral N	С	644
	Chiral	D	645
Chiral	F F	D	646
H ₃ C N	HOH FOH		

TABLE 3-continued

IC 50 Values		
Structure	IC50_uM_Mean	Compound
Chiral Chiral	В	647
Chiral OH N OH		648
Chiral CH ₃ OH F F F OH		649
Chiral NH F F OH	В	650

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
Chiral N=N N=N N N F F F F OH F F F F F F F F F F F F F	С	651
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	D	652
Chiral O O O O O O O O O O O O O O O O O O O	A	653

445	446	
TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
Chiral F F F OH	С	654
Chiral H ₃ C—O F F OH OH OH	В	655

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
Chiral OH OH OH F F F	В	657
Chiral F Chiral F F F F F F F F	В	658
НО	В	659

Chiral
$$\begin{array}{c} HO \\ N \\ OH \\ M \\ \end{array}$$

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
Chiral Chiral CH ₃	В	660
Chiral Chiral CH_3	C	661
Chiral CH ₃ OH F F	В	662

TABLE 3-continued

Trible 5 Condition	aca		
IC 50 Values			
Structure		IC50_uM_Mean	Compound
H ₃ C	Chiral N OH	В	663

TABLE 3-continued

TABI	LE 3-continued		
	C 50 Values		
Structure		IC50_uM_Mean	Compound
O—CH ₃	Chiral	В	666
H CONTRACTOR OF THE PROPERTY O	H H H H H H		
H ₃ C N N H	Chiral Chiral	В	667
O—CH ₃ H_3 C H_3 C	Chiral OH	C	668
H ₃ C — O			

TABLE 3-continued

	TABLE 3-continued		
	IC 50 Values		
	ucture	IC50_uM_Mean	Compound
H ₃ C ————————————————————————————————————	Chiral O N H H OH	D	669
	()	D	670
H ₃ C O	OH Chiral	D	671
H ₃ C O=	N N N N N N N N N N N N N N N N N N N		
H ₃ C	H ₃ C Chiral	D	672

TABLE 3-continued

TABLE	3-continued		
IC 5	0 Values		
Structure		IC50_uM_Mean	Compound
H ₃ CO	Chiral N	D	673
N H	•••ОН		
CH ₃	Chiral	D	674
	ОН		
CH ₃	Chiral N	D	675
	ОН		

TABLE 3-continued

	TABLE 3-continued		
	IC 50 Values		
St	tructure	IC50_uM_Mean	Compound
OCH3	Chiral O	D	676
	OH OH		
Chiral N		D	677
	Chiral	D	678

TABLE 3-continued

TABLE 5-continued			
IC 50 Values			
Structure		IC50_uM_Mean	Compound
Here we have a second of the s	Chiral	D	679

$$H_3C$$
 Chiral A 680

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
Chiral OH OH	C	681
$_{ m H_3C}$		
	D	682
O Chiral		
нн		
$_{ m HO}$ $_{ m N}$ $_{ m CH_3}$		
O NH		
CH		
ĊH ₃ O HO H Chiral		602
O HO HO Chiral	D D	683
$_{ m CH_3}$		
H ₃ C		
 y -		

TABLE 3-continued

) Values		
	IC50_uM_Mean	Compound
Chiral CH ₃ CH ₃ CH ₃	В	684
	CH ₃	Chiral B CH3 CH3 CH43

IC 50 Values			
Structure	IC50_uM_Mean	Compound	
OH HN OCH3	D	686	

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH HIN O	D	689
NH OH OH	A	690
O NH O NH O NH O NH O NH O NH	D	691

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
	В	692
OH HIN HO	A	693
H ₃ C—O OH HN HN OH OH OH OH OH OH O	В	694
$O \longrightarrow H_{3}C$		

TABLE 3-continued	., .	
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH HIN OCH3	В	695
OH NH NH OH NH OH NH	C	696
OH HIN OH	В	697

IC 50 Values			
Structure	IC50_uM_Mean	Compound	
OH OCH3 N H N H N O H 3 C	В	698	

TABLE 3-continued

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH OCH3 OH OCH3	В	700
OH OCH3 OH OCH3 OH OCH3	C	701
H ₃ C OH HN OFF	A	702

TABLE 3-continued	400	
IC 50 Values		
Structure OH HN OH H3C	IC50_uM_Mean	703
OH HN O	A	704
H ₃ C — O OH HN OH OH OH OH OH OH OH O	A	705

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
	A	706
H_3C' OH OH N N N N N CH_3	A	707
$O \longrightarrow O$ $HO \longrightarrow F$ F $O \longrightarrow O$ $H_{3}C$		
OH NH OCH ₃	A	708
$H_{3}C$		

TABLE 3-continued			
IC 50 Values			
Structure	IC50_uM_Mean	Compound	
OH NH OCH ₃ OCH ₃ OCH ₃	A	709	
OH NH OCH ₃ OCH ₃ OF F	A	710	
P F OH NH OCH OCH NH OF F F	A	711	

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
OH HN OH CH ₃	В	712
OH NH OOCH3	В	713
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
OH N N N N N N N N N O CH ₃	D	714

40/	400	
TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
	D	715
OH OH OH OH OH OCH ₃		
OH OH OH OH OH OH OH OH	D	716
OH ON ON ON ON ON ON	D	717

TABLE 3-continued			
IC 50 Values			
Structure	IC50_uM_Mean	Compound	
OH NOH OH OH OH OH OH OH OH OH OH	D	718	
$\begin{array}{c} OH \\ O \\ F \\ F \\ O \\ CH_3 \end{array}$	D	719	
OH HO F F O N N N N N N N N N N N N N N N N	D	720	

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
HO F F O N N N N N N N N N N N N N N N N	D	721
OH OH OH OH OH OH OH OF F	A	722
OH OOH OO OF F	A	723

TABLE 3-continued		
IC 50 Values	ICEOM Marr	C
OH OH OCH ₃ CH ₃ CH ₃	B B	724
F WW CH ₃ OH CH ₃ OH CH ₃ F F F F	В	725
OH NH OH CH ₃ CH ₃	В	726

TABLE 3-continued

IC 50 Values		
Structure	IC50_uM_Mean	Compound
H ₃ C OH	A	727
HO _{Mm} , OH HN OCH ₃	A	728
HOIIIIII OH CH3	A	729
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		

TABLE 3-continued	470	
IC 50 Values		
Structure	IC50_uM_Mean	Compound
$\begin{array}{c} \begin{array}{c} OH \\ \hline \\ O \end{array} \end{array}$	A	730
$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		
F O CH ₃	A	731
$\begin{array}{c} O \\ F \\ \end{array}$		
HOIIIIIII CH ₃ O CH ₃ O CH ₃	В	732

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
HOIIIIII CH ₃	A	733
$\bigcap_{CH_3}^{O} F$		
F N N N F	A	734
F NH NH	A	735
O F F		

TABLE 3-continued

TABLE 3-continued		
IC 50 Values Structure	IC50_uM_Mean	Compound
P O O F	A	736
OH H ₃ C	В	737
HOIM CH ₃ O H ₃ CH ₃		
HOID CH ₃ $O \longrightarrow O$ $O \longrightarrow O$ CH_3 $HO \longrightarrow F$ F	A	738

TABLE 3-continued		
IC 50 Values		
Structure	IC50_uM_Mean	Compound
F N OH NH O	A	739
$\begin{array}{c} \bullet \\ \bullet $	A	740
HOIIIII CH ₃		
H_3C OH N OH OH OH OH OH OH OH OH	A	741

505 Example 4

Compound A (N4(1R,2R)-1-(2,3-dihydrobenzo[b][1, 4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)nonanamide) Effectively Inhibited PKD in a Mouse Model

Design:

jck mice was administered Compound A ad libitum in feed (0.225% Compound A mixed with a standard diet chow in powdered format) from 26-64 days of age. Control jck mice were fed a control powdered diet from 26-64 days of age. At 63 days of age, animals were transferred to metabolic cages for 24 hour urine collection. At 64 days of age, animals were sacrificed by $\rm CO_2$ administration. Blood was collected by heart puncture for serum isolation. Kidneys were isolated and bisected; half of each kidney was fixed in 4% paraformaldehyde in PBS overnight for paraffin embedding and H&E staining. Results:

Results are summarized in table 4 and discussed below.

TABLE 4

	Summary of results, 0.225% Compound A in feed, 26-64 days of age					
No of animals	Gender	Dose (mg/kg)	Body weight (g)	K/BW ratio (%)	Cystic volume (% BW)	BUN (mg/dL)
9 9 10 10	M M F F	Vehicle Treated Vehicle Treated	22.03 ± 1.58 18.43 ± 1.82* 19.20 ± 1.80 15.93 ± 1.65*	7.55 ± 1.65 4.46 ± 0.46* 4.94 ± 0.73 3.57 ± 0.58*	2.86 ± 1.04 0.88 ± 0.23* 1.22 ± 0.41 0.58 ± 0.29*	90.11 ± 10.02 39.25 ± 10.70* 50.50 ± 14.32 34.67 ± 9.41*

*p < 0.05% compared to control (2-tailed t-test)

Kidney and Body Weights

Total body weight and kidney weight were determined at sacrifice. A statistically significant decrease in total body weight was noted (p-value<0.05, two-tailed t-test). A significant difference in kidney weight/body weight ratio was also observed (p-value<0.05, two-tailed t-test) for the treated animals, suggesting efficacy of the drug.

Cyst Volume:

Cyst volume was measured by quantitating the percentage of cystic area in histological sections of kidneys from the treated and control animals, multiplied by the kidney/body weight ratio. A significant decrease in cyst volume was observed (p-value<0.05, two-tailed t-test) for the treated animals.

Kidney Function:

Blood urea nitrogen (BUN) levels were determined in serum samples derived from animals at sacrifice. BUN levels were elevated in the untreated controls, while the treated 65 animals demonstrated a significant reduction of BUN levels (p-value<0.05, two-tailed t-test).

506 CONCLUSION

Administration of Compound A in feed at 0.225% resulted in a statistically significant reduction of cystic disease, as measured by kidney/body weight ratio and cyst volume. This was accompanied by improved renal function in treated animals relative to controls. These improvements were observed in both males and females. Therefore, these results demonstrate that glucosylceramide synthase inhibition is an effective strategy to treat polycystic kidney disease.

What is claimed is:

1. A method of treating a subject having polycystic kidney disease, comprising administering to the subject a therapeutically effective amount of a compound represented by the following structural formula:

$$R^{1}$$
 $N(R^{2}R^{3})$
 $X - R^{4}$

or a pharmaceutically acceptable salt thereof, wherein:

 $R^{\hat{1}}$ is a phenyl group optionally substituted with one or more halogen, cyano, nitro, C1-C6 alkyl, C1-C6 haloalkyl, $-OR^{30}, -SR^{30}, -N(R^{31})_2, Ar^1, -V_o-OR^{30}, -V_o-N(R^{31})-V_o-Ar^1, -O-V_o-Ar^1, -O-V_o-Ar^1, -O-V_o-Ar^1, -O-V_o-N(R^{31}), -S-V_o-Ar^1, -S-V_1-N$

$$\begin{array}{lll} ({\rm R}^{31})_2, & -{\rm N}({\rm R}^{31})-{\rm V}_o-{\rm Ar}^1, & -{\rm N}({\rm R}^{31})-{\rm V}_1-{\rm N}\\ ({\rm R}^{31})_2, -{\rm O}-[{\rm CH}_2]_p-{\rm O}-, -{\rm S}-[{\rm CH}_2]_p-{\rm S}-, {\rm or}\\ -[{\rm CH}_2]_q-; \end{array}$$

each V_o is independently a C1-C10 alkylene group; each V_1 is independently a C2-C10 alkylene group;

Ar¹ is an aryl group each optionally and independently substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; and

each R³⁰ is independently

i) hydrogen;

- ii) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or
- iii) an alkyl group optionally substituted with one or more substituents selected from the group consisting

507

of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; and

each $\rm R^{31}$ is independently $\rm R^{30}, -\!\!-\!\!CO_2R^{30}, -\!\!-\!\!SO_2R^{30}$ or $-\!\!-\!\!C(\rm O)R^{30};$ or

-N(R³¹)₂ taken together is an optionally substituted nonaromatic heterocyclic group; each p is independently 1, 2, 3 or 4;

each q is independently 3, 4, 5 or 6; Y is —H;

—N(R²R³) is a 5- or 6-membered non-aromatic nitrogencontaining heterocyclic group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl,

haloalkyl, $-OR^{40}$, -O(haloalkyl), $-SR^{40}$, $-NO_2$, -CN, $-N(R^{41})_2$, $-NR^{41}C(O)R^{40}$, $-NR^{41}C(O)$ OR^{42} , $-N(R^{41})C(O)N(R^{41})_2$, $-C(O)R^{40}$, $-C(S)R^{40}$, $-C(O)OR^{40}$, $-OC(O)R^{40}$, $-C(O)N(R^{41})_2$, $-S(O)R^{41}$, $-SO_2N(R^{41})_2$, $-S(O)R^{42}$, $-SO_3R^{40}$, $-SO_2N(R^{41})_2$, $-S(O)R^{42}$, $-SO_3R^{40}$, $-V_2$, $-V_$

each V_2 is independently a C1-C4 alkylene group; Ar^2 is an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxy-carbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; 35

each R⁴⁰ is independently

i) hydrogen;

ii) an aryl group optionally substituted with one or more substituents selected from the group consisting of 40 halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or

iii) an C1-C10 alkyl group optionally substituted with 45 one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; and

each R^{41} is independently R^{40} , $-CO_2R^4$, $-SOR^{40}$ or $-C(O)R^{40}$; or

—N(R⁴¹)₂ taken together is an optionally substituted nonaromatic heterocyclic group; and each R⁴² is independently:

i) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, 60 C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or

 ii) an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, 65 C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; 508

X is $-(CR^5R^6)_n$ -Q-; Q is -O, -S, -C(O), -C(S), -C(O), -C(S)O, -C(S)O, -C(S)O, -C(S)S, $-C(O)NR^7$, $-NR^7$, $-NR^7$ C(O), $-NR^7$ C(O), $-NR^7$ C(O), -SO₃, -SO, -SO(O)₂, -SO₂NR⁷, or $-NR^7S$ O₂—; and -RO is a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group; or

X is —O—, —S— or —NR⁷—; and R⁴ is a substituted or unsubstituted aliphatic group, or substituted or

unsubstituted aryl group; or

X is —(CR⁵R⁶)_n—; and R⁴ is a substituted or unsubstituted cyclic alkyl group, or a substituted or unsubstituted cyclic alkenyl group, a substituted or unsubstituted aryl group, —CN, —NCS, —NO₂ or a halogen; or

X is a covalent bond; and R⁴ is a substituted or unsubstituted aryl group; and

R⁵ and R⁶ are each independently —H, —OH, —SH, a halogen, a substituted or unsubstituted lower alkoxy group, a substituted or unsubstituted lower alkylthio group, or a substituted or unsubstituted lower aliphatic group;

n is 1, 2, 3, 4, 5 or 6; and

each R⁷ is independently —H, a substituted or unsubstituted aliphatic group, or a substituted or unsubstituted aryl group, or R⁷ and R⁴ taken together with the nitrogen atom of NR⁷R⁴ form a substituted or unsubstituted non-aromatic heterocyclic group.

2. The method of claim 1, wherein:

R⁴ is an aliphatic or aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, haloalkyl, Ar³, Ar³—Ar³, $-OR^{50}$, -O(haloalkyl), $-SR^{50}$, $-NO_2$, -CN, -NCS, $-N(R^{51})_2$, $-NR^{51}C(O)R^{50}$, $-NR^{51}C(O)$ OR^{52} , $-N(R^{51})C(O)N(R^{51})_2$, $-C(O)R^{50}$, $-C(S)R^{50}$. $-C(O)OR^{50}$, $-OC(O)R^{50}$, $-C(O)N(R^{51})_2$, -S $(O)_2R^{50}$, $--SO_2N(R^{51})_2$, $--S(O)R^{52}$, $--SO_3R^{50}$, $-V_4$ — $S(O)_2R^{50}$, $-V_4$ — $SO_2N(R^{51})_2$, $-V_4$ —S(O) $\begin{array}{c} -C(O) - V_4 - N(R^{51})_2, -C(O) - V_4 - Ar^3, -C(S) - V_4 - N(R^{51})_2, -C(S) - V_4 - Ar^3, -C(O)O - V_5 - N \end{array}$ V_4 —N(R)₂, —C(S)— V_4 —Ar , —C(O)O— V_5 —N (R⁵¹)₂, —C(O)O— V_4 —Ar³, —O—C(O)— V_5 —N (R⁵¹)₂, —O—C(O)— V_4 —Ar³, —C(O)N(R⁵¹)— V_5 —N(R⁵¹)₂, —C(O)N(R⁵¹)— V_4 —Ar³, —S(O)₂— V_4 —N (R⁵¹)₂, —S(O)₂— V_4 —Ar³, —S(O)₂N(R⁵¹)— V_5 —N (R⁵¹)₂, —SO₂N(R⁵¹)— V_4 —Ar³, —S(O)— V_4 —N (R⁵¹)₂, —S(O)— V_4 —Ar³, —S(O)— V_4 — $(R^{51})_2$, $-S(O)_2$ $-O-V_4$ $-Ar^3$, $-NR^{51}SO_2-V_4-N$ $(R^{51})_2$, $-NR^{51}SO_2-V_4-Ar^3$, $-O-[CH_2]_p$ -O- $-S-[CH₂]_{n'}-S-$, and $-[CH₂]_{a'}-$;

each V_4 is independently a C1-C10 alkylene group; each V_5 is independently a C2-C10 alkylene group;

50

each Ar³ is independently an aryl group each optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy and haloalkyl; and

each R⁵⁰ is independently

- i) hydrogen;
- ii) an aryl group optionally substituted with one or more substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or
- iii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; and

each R^{51} is independently R^{50} , — CO_2R^{50} , — SO_2R^{50} or — $C(O)R^{50}$; or

- —N(R⁵¹)₂ taken together is an optionally substituted nonaromatic heterocyclic group; and each R⁵² is independently:
 - an aryl group optionally substituted with one or two substituents selected from the group consisting of halogen, alkyl, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; or
 - ii) an alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, alkylamino, dialkylamino, alkoxy, nitro, cyano, hydroxy, haloalkoxy, alkoxycarbonyl, alkylcarbonyl and haloalkyl; and

each p' is 1, 2, 3 or 4; and each q' is 3, 4, 5 or 6.

 ${f 3}.$ The method of claim ${f 2},$ represented by the following structural formula:

OH
$$\begin{array}{c}
\text{OH} \\
\text{N}(\mathbb{R}^{2}\mathbb{R}^{3}) \\
\text{HN} \\
\text{(CR}^{5}\mathbb{R}^{6})n - \mathbb{Q} - \mathbb{R}^{4}
\end{array}$$
45

or a pharmaceutically acceptable salt thereof.

4. The method of claim 3, wherein:

Ar¹ is a phenyl group each optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, 65 hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; and

each R30 is independently

- i) hydrogen;
- ii) a phenyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C6 alkyl, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; or
- iii) an C1-C10 alkyl group optionally substituted with one or more substituents selected from the group consisting of halogen, amino, C1-C6 alkylamino, C1-C6 dialkylamino, C1-C6 alkoxy, nitro, cyano, hydroxy, C1-C6 haloalkoxy, C1-C6 alkoxycarbonyl, C1-C6 alkylcarbonyl and C1-C6 haloalkyl; and

each \mathbb{R}^{31} is independently \mathbb{R}^{30} , or $-\mathbb{N}(\mathbb{R}^{31})_2$ is an optionally substituted non-aromatic heterocyclic group.

- 5. The method of claim 4, wherein —N(R²R³) is a pyrrolidinyl, azetidinyl, piperidinyl, piperazinyl or morpholinyl group optionally substituted with one or more substituents selected from the group consisting of halogen, C1-C5 alkyl, C1-C5 haloalkyl, hydroxyl, C1-C5 alkoxy, nitro, cyano, C1-C5 alkoxycarbonyl, C1-C5 alkylcarbonyl or C1-C5 haloalkoxy, amino, C1-C5 alkylamino and C1-C5 dialkylamino.
- **6**. The method of claim **2**, represented by the following structural formula:

or a pharmaceutically acceptable salt thereof.

7. The method of claim 6, represented by the following structural formula:

$$R^1$$
 $N(R^2R^3)$
 $N(R^2R^3)$
 $N(R^2R^3)$

or a pharmaceutically acceptable salt thereof.

8. The method of claim 7, represented by the following structural formula:

$$R^1$$
 $N(R^2R^3)$
 $CCH_2)_n$
 O
 A

or a pharmaceutically acceptable salt thereof, wherein phenyl ring A is optionally substituted.

9. The method of claim 2, represented by the following structural formula:

20

25

45

50

$$\begin{array}{c} OH \\ R^1 \\ \hline \\ HN \\ O \end{array} \begin{array}{c} N(R^2R^3) \\ \hline \\ (CR^5R^6)_n \end{array} \begin{array}{c} O \\ \\ R^4 \end{array}$$

or a pharmaceutically acceptable salt thereof.

10. The method of claim 9, represented by the following structural formula:

$$R^1$$
 $N(R^2R^3)$
 $C(CH_2)n$
 R^4

or a pharmaceutically acceptable salt thereof.

11. The method of claim 10, represented by the following 30 structural formula:

or a pharmaceutically acceptable salt thereof, wherein phenyl ring A is optionally substituted.

12. The method of claim 2, represented by the following structural formula:

$$\begin{array}{c}
\text{OH} \\
\text{R}^{1} \\
\text{HN} \\
\text{O}
\end{array}$$

$$\begin{array}{c}
\text{N(R}^{2}R^{3}) \\
\text{(CR}^{5}R^{6})n - R^{4}
\end{array}$$

$$\begin{array}{c}
\text{60}
\end{array}$$

or a pharmaceutically acceptable salt thereof, wherein R⁴ is an optionally substituted aryl group.

13. The method of claim 12, represented by the following structural formula:

$$R^1$$
 $N(R^2R^3)$
 $N(R^2R^3)$
 $N(R^2R^3)$

or a pharmaceutically acceptable salt thereof.

14. The method of claim 2, represented by the following structural formula (XI) or (XII):

$$R^1$$
 $N(R^2R^3)$ or R^1
 $N(R^2R^3)$
 $N(R^2R^3)$
 $N(R^7R^4)$

or a pharmaceutically acceptable salt thereof, wherein R7 is -H or C1-C6 alkyl.

15. The method of claim 14, represented by the following structural formula:

OH
$$N(R^{2}R^{3})$$

$$OH$$

$$R^{1}$$

$$N(R^{2}R^{3})$$

$$OH$$

$$N(R^{2}R^{3})$$

$$N(R^{2}$$

or a pharmaceutically acceptable salt thereof, wherein R⁸ is -H, or an aryl or lower alkyl group each optionally and independently substituted with one or more substituents selected from the group consisting of halogen, C1-C10 selected from the group consisting of halogen, C1-C10 alkyl, C1-C10 haloalkyl, Ar³, $-OR^{50}$, -O(haloalkyl), SR⁵⁰, $-NO_2$, -CN, $-N(R^{51})_2$, $-NR^{51}C(O)R^{50}$, $-C(O)R^{50}$, $-C(O)R^{50}$, $-C(O)R^{50}$, $-C(O)R^{50}$, $-V_4$, $-O(R^{51})_2$, $-V_4$, $-Ar^3$, $-V_4$, $-OR^5$, $-V_4$, -O(haloalkyl), $-V_4$, $-SR^{50}$, $-V_4$, -V $\begin{array}{llll} & - v_4 - CO_2 R^{\circ\circ}, & - V_4 - OC(O) R^{\circ\circ}, & - V_4 - C(O) N \\ & (R^{51})_2 -, & - O - V_4 - Ar^3, & - O - V_5 - N(R^{51})_2, \\ & - S - V_4 - Ar^3, & - S - V_5 - N(R^{51})_2, & - N(R^{51}) - V_4 - Ar^3, & - N(R^{51}) - V_5 - N(R^{51})_2, & - NR^{51}C(O) - V_4 - N \\ & (R^{51})_2, & - NR^{51}C(O) - V_4 - Ar^3, & - C(O) - V_4 - N \\ & (R^{51})_2, & - C(O) - V_4 - Ar^3, & - C(O)O - V_5 - N(R^{51})_2, \\ & - C(O)O - V_4 - Ar^3, & - O - C(O) - V_5 - N(R^{51})_2, \\ & - O - C(O) - V_4 - Ar^3, & - C(O)N(R^{51}) - V_5 - N \\ & (R^{51})_2, & - C(O)N(R^{51}) - V_4 - Ar^3, & - O - [CH_2]_p - O \\ & - \text{and} & - [CH_2]_a -; \text{ and} \end{array}$ O— and — $[CH_2]_{q'}$ —; and

k is 0, 1, 2, 3, 4, 5 or 6.

16. The method of claim **2**, represented by the following structural formula:

OH
$$N(R^2R^3)$$
, R^4 10

or a pharmaceutically acceptable salt thereof, wherein $R^4\,\mathrm{is}$ an optionally substituted aryl group.

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 9,272,996 B2 Page 1 of 1

APPLICATION NO. : 13/595251

DATED : March 1, 2016

INVENTOR(S) : Craig Siegel et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claims

In Claim 1, Column 506, line 33, delete "- V_O - $N(R^{31})$ " and insert -- - V_O - $N(R^{31})_2$, --;

In Claim 1, Column 506, line 34, delete " $-O-V_2-N(R^{31})$ " and insert -- $-O-V_1-N(R^{31})_2$ --;

In Claim 1, Column 507, line 51, delete " $-CO_2R^4$, $-SOR^{40}$ " and insert -- $-CO_2R^{40}$, $-SO_2R^{40}$ --;

In Claim 4, Column 509, line 57, delete "-O-V₁-N(R^3)₂" and insert -- -O-V₁-N(R^{31})₂ --;

In Claim 4, Column 509, line 58, delete "- $N(R^{31})$ - V_1 - $N(R^{3})_2$ " and insert -- - $N(R^{31})$ - V_1 - $N(R^{31})_2$ --;

In Claim 15, Column 512, line 54, delete "-V-OR⁵" and insert -- -V-OR⁵⁰ --.

Signed and Sealed this Nineteenth Day of July, 2016

Michelle K. Lee

Director of the United States Patent and Trademark Office

Michelle K. Lee